Câu hỏi:

11/07/2024 3,374

Cho tam giác ABC cân tại đỉnh A. Gọi H là trung điểm của BC, D là hình chiếu của H lên AC, M là trung điểm của HD. Chứng minh rằng: AM DB.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta cần chứng minh AM DB Û \(\overrightarrow {AM} .\overrightarrow {BD} = 0\).

Vì M là trung điểm của HD nên \(2\overrightarrow {AM} = \overrightarrow {AH} + \overrightarrow {AD} \).

Ta có: \(\overrightarrow {BD} = \overrightarrow {BH} + \overrightarrow {HD} \).

Do đó \(2\overrightarrow {AM} .\overrightarrow {BD} = \left( {\overrightarrow {AH} + \overrightarrow {AD} } \right).\left( {\overrightarrow {BH} + \overrightarrow {HD} } \right)\)

                          \[ = \overrightarrow {AH} .\overrightarrow {BH} + \overrightarrow {AH} .\overrightarrow {HD} + \overrightarrow {AD} .\overrightarrow {BH} + \overrightarrow {AD} .\overrightarrow {HD} \]

                          \[ = \underbrace {\overrightarrow {AH} .\overrightarrow {BH} }_{ = 0\,\left( {do\,\,AH \bot BH} \right)} + \overrightarrow {AH} .\overrightarrow {HD} + \overrightarrow {AD} .\overrightarrow {BH} + \underbrace {\overrightarrow {AD} .\overrightarrow {HD} }_{ = 0\,\left( {do\,\,AD \bot HD} \right)}\]

                          \[ = \overrightarrow {AH} .\overrightarrow {HD} + \overrightarrow {AD} .\overrightarrow {BH} \]

                          \[ = \overrightarrow {AH} .\overrightarrow {HD} + \left( {\overrightarrow {AH} + \overrightarrow {HD} } \right).\overrightarrow {BH} \]

                          \[ = \overrightarrow {AH} .\overrightarrow {HD} + \overrightarrow {AH} .\overrightarrow {BH} + \overrightarrow {HD} .\overrightarrow {BH} \]

                          \[ = \overrightarrow {AH} .\overrightarrow {HD} + \underbrace {\overrightarrow {AH} .\overrightarrow {BH} }_{ = 0\,\left( {do\,\,AH \bot BH} \right)} + \overrightarrow {HD} .\overrightarrow {BH} \]

                          \[ = \overrightarrow {HD} \left( {\overrightarrow {AH} + \overrightarrow {BH} } \right)\]

                          \[ = \overrightarrow {HD} .\left( {\overrightarrow {AH} + \overrightarrow {HC} } \right)\,\,\,\left( {do\,\,\,\overrightarrow {BH} = \overrightarrow {HC} } \right)\]

                          \[ = \overrightarrow {HD} .\overrightarrow {AC} = 0\,\,\,\left( {doHD \bot AC} \right)\]

Do đó \(2\overrightarrow {AM} .\overrightarrow {BD} = 0 \Leftrightarrow \overrightarrow {AM} .\overrightarrow {BD} = 0\).

Vậy AM DB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,806

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 14,571

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 12,068

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 10,198

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 8,185

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,735

Câu 7:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,399

Bình luận


Bình luận