Câu hỏi:

11/07/2024 765

Cho hai hàm số bậc nhất có đồ thị là (D): y = (5m – 2)x – 3 và (D'): y = –x + 3 – 2m. Tìm m để (D) và (D') cắt nhau tại 1 điểm trên trục hoành.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cách 1.

Để (D) và (D') thì 5m – 2 ≠ –1 Û 5m ≠ 1 \( \Leftrightarrow m \ne \frac{1}{5}\).

Phương trình hoành độ giao điểm của (D) và (D’) là:

(5m – 2)x – 3 = –x + 3 – 2m

Û (5m – 2 + 1)x = 3 – 2m + 3

Û (5m – 1)x = 6 – 2m

\( \Leftrightarrow x = \frac{{6 - 2m}}{{5m - 1}}\) (do \(m \ne \frac{1}{5}\))

Thay \(x = \frac{{6 - 2m}}{{5m - 1}}\) vào phương trình đường thẳng (D’) ta có:

\(y = - \frac{{6 - 2m}}{{5m - 1}} + 3 - 2m\)

\( \Leftrightarrow y = \frac{{2m - 6 + 15m - 3 - 10{m^2} + 2m}}{{5m - 1}}\)

\( \Leftrightarrow y = \frac{{ - 10{m^2} + 19m - 9}}{{5m - 1}}\)

Do đó tọa độ giao điểm của (D) và (D’) là \(\left( {\frac{{6 - 2m}}{{5m - 1}};\frac{{ - 10{m^2} + 19m - 9}}{{5m - 1}}} \right)\).

Để (D) và (D') cắt nhau tại 1 điểm trên trục hoành thì tung độ của giao điểm bằng 0

\( \Leftrightarrow \frac{{ - 10{m^2} + 19m - 9}}{{5m - 1}} = 0\)

Û –10m2 + 19m – 9 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \frac{9}{{10}}\end{array} \right.\left( {tm} \right)\)

Vậy giá trị m cần tìm là \[m \in \left\{ {1;\frac{9}{{10}}} \right\}\].

Cách 2.

• Để (D) và (D') thì 5m – 2 ≠ –1 Û 5m ≠ 1 \( \Leftrightarrow m \ne \frac{1}{5}\).

• Để (D) cắt trục hoành thì 5m – 2 ≠ 0 \( \Leftrightarrow m \ne \frac{2}{5}\).

Gọi A(xA; 0) là giao điểm của (D) với trục hoành.

Khi đó 0 = (5m – 2)xA – 3

\( \Rightarrow {x_A} = \frac{3}{{5m - 2}}\). Suy ra \(A\left( {\frac{3}{{5m - 2}};0} \right)\).

• Để (D’) cắt trục hoành thì –1 ≠ 0 (luôn đúng m)

Do đó (D’) luôn cắt trục hoành.

Gọi B(xB; 0) là giao điểm của (D') với trục hoành.

Khi đó 0 = –xB + 3 – 2m.

Þ xB = 3 – 2. Suy ra B(3 – 2m; 0).

• Để (D) và (D’) cắt nhau tại một điểm trên trục hoành thì A trùng B

Û \(\frac{3}{{5m - 2}} = 3 - 2m\)

Û 15m – 6 – 10m2 + 4m = 3

Û –10m2 + 19m – 9 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \frac{9}{{10}}\end{array} \right.\left( {tm} \right)\)

Vậy giá trị m cần tìm là \[m \in \left\{ {1;\frac{9}{{10}}} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,630

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 13,976

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 11,837

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 9,944

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 7,962

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,638

Câu 7:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,334

Bình luận


Bình luận