Câu hỏi:
11/07/2024 328Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB (P ∈ AB), MQ vuông góc với AC (Q ∈ AC). Gọi R là điểm đối xứng M qua P.
a) Tứ giác AQMP là hình gì? Vì sao?
b) Tứ giác AMBR là hình gì? Vì sao?
c) Để tứ giác AQMP là hình vuông thì tam giác ABC cần thêm điều kiện gì?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: tam giác ABC vuông tại A nên \(\widehat A = 90^\circ \)
MP vuông góc AB nên \[\widehat P = 90^\circ \]
MQ vuông góc AC nên \[\widehat Q = 90^\circ \]
Tứ giác AQMP có \[\widehat A = \widehat P = \widehat Q = 90^\circ \] nên là hình chữ nhật.
b) Tam giác ABC vuông tại A có AM là trung tuyến nên \[AM = \frac{1}{2}BC = MB\].
Do đó tam giác AMB cân
Mà MP là đường cao nên đồng thời cũng là đường trung tuyến của tam giác
Suy ra AP = BP.
Xét tứ giác AMBR có: AP = BP; MP = PR (R đối xứng với M qua P)
Do đó AMBR là hình bình hành
Lại có MP vuông góc AB hay MR vuông góc AB
Suy ra AMBR là hình thoi.
c) Để AQMP là hình vuông thì AM là tia phân giác của \(\widehat {QAP}\)
Tam giác ABC có AM là trung tuyến đồng thời là đường phân giác nên là tam giác cân tại A.
Vậy tam giác ABC vuông cân tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Câu 4:
Câu 5:
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Câu 6:
Câu 7:
về câu hỏi!