Câu hỏi:
11/07/2024 644Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB (P ∈ AB), MQ vuông góc với AC (Q ∈ AC). Gọi R là điểm đối xứng M qua P.
a) Tứ giác AQMP là hình gì? Vì sao?
b) Tứ giác AMBR là hình gì? Vì sao?
c) Để tứ giác AQMP là hình vuông thì tam giác ABC cần thêm điều kiện gì?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta có: tam giác ABC vuông tại A nên \(\widehat A = 90^\circ \)
MP vuông góc AB nên \[\widehat P = 90^\circ \]
MQ vuông góc AC nên \[\widehat Q = 90^\circ \]
Tứ giác AQMP có \[\widehat A = \widehat P = \widehat Q = 90^\circ \] nên là hình chữ nhật.
b) Tam giác ABC vuông tại A có AM là trung tuyến nên \[AM = \frac{1}{2}BC = MB\].
Do đó tam giác AMB cân
Mà MP là đường cao nên đồng thời cũng là đường trung tuyến của tam giác
Suy ra AP = BP.
Xét tứ giác AMBR có: AP = BP; MP = PR (R đối xứng với M qua P)
Do đó AMBR là hình bình hành
Lại có MP vuông góc AB hay MR vuông góc AB
Suy ra AMBR là hình thoi.
c) Để AQMP là hình vuông thì AM là tia phân giác của \(\widehat {QAP}\)
Tam giác ABC có AM là trung tuyến đồng thời là đường phân giác nên là tam giác cân tại A.
Vậy tam giác ABC vuông cân tại A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có: \(OI \bot AC\) nên \(\widehat {OIC} = 90^\circ \)
\(CH \bot AB\) nên \(\widehat {OHC} = 90^\circ \)
Xét tứ giác CHOI có \[\widehat {OIC} + \widehat {OHC} = 90^\circ + 90^\circ = 180^\circ \], mà hai góc này ở vị trí đối nhau trong tứ giác
Do đó tứ giác CHOI nội tiếp.
Suy ra bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Do Ax là tiếp tuyến của đường tròn (O) nên Ax ⊥ AB, do đó \(\widehat {xAB} = 90^\circ \)
Xét tam giác AOM vuông tại A có đường cao AI, theo hệ thức lượng trong tam giác vuông ta có: OA2 = OI.OM
Mà OA = R (bán kính đường tròn) nên OI.OM = R2.
Theo bài, R = 6 cm và OM = 2R
Do đó \(OI = \frac{{{R^2}}}{{OM}} = \frac{{{R^2}}}{{2R}} = \frac{R}{2} = 3\left( {cm} \right)\).
c) Ta có điểm C nằm trên đường tròn (O), đường kính AB nên \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó AC ⊥ BC tại C.
Lại có OI ⊥ AC tại I
Suy ra OI // BC nên \(\widehat {AOM} = \widehat {ABC}\)
Hay \(\widehat {AOM} = \widehat {HBC}\)
Xét DAMO và DHCB có:
\(\widehat {MAO} = \widehat {CHB} = 90^\circ \) và \(\widehat {AOM} = \widehat {HBC}\)
Suy ra .
Gọi N là giao điểm của BC và Ax.
Xét DABN có OM // BN và O là trung điểm của AB nên M là trung điểm của AN.
Do CH // AN, theo hệ quả định lí Talet ta có: \(\frac{{HK}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KC}}{{MN}}\)
Do đó \(\frac{{HK}}{{AM}} = \frac{{KC}}{{MN}}\), mà AM = MN (do M là trung điểm của AN)
Suy ra HK = KC.
Lời giải
Lời giải
• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1
Û m ≠ ‒2.
• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û \(m \ne - \frac{1}{2}\).
Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.
Khi đó 0 = (2m + 1)xA – 2m – 3
Þ \({x_A} = \frac{{2m + 3}}{{2m + 1}}\). Suy ra \(A\left( {\frac{{2m + 3}}{{2m + 1}};0} \right)\).
• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.
Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.
Khi đó 0 = (m – 1)xB + m
Þ \({x_B} = \frac{{ - m}}{{m - 1}}\). Suy ra \(B\left( {\frac{{ - m}}{{m - 1}};0} \right)\).
Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.
\( \Leftrightarrow \frac{{2m + 3}}{{2m + 1}} = \frac{{ - m}}{{m - 1}}\)
Þ (2m + 3).(m – 1) = (2m + 1).(‒m)
Û 2m2 + m – 3 = –2m2 – m
Û 4m2 + 2m – 3 = 0
Û \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) (thỏa mãn).
Vậy \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) thỏa mãn yêu cầu đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)