Câu hỏi:

11/07/2024 644

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB (P AB), MQ vuông góc với AC (Q AC). Gọi R là điểm đối xứng M qua P.

a) Tứ giác AQMP là hình gì? Vì sao?

b) Tứ giác AMBR là hình gì? Vì sao?

c) Để tứ giác AQMP là hình vuông thì tam giác ABC cần thêm điều kiện gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: tam giác ABC vuông tại A nên \(\widehat A = 90^\circ \)

MP vuông góc AB nên \[\widehat P = 90^\circ \]

MQ vuông góc AC nên \[\widehat Q = 90^\circ \]

Tứ giác AQMP có \[\widehat A = \widehat P = \widehat Q = 90^\circ \] nên là hình chữ nhật.

b) Tam giác ABC vuông tại A có AM là trung tuyến nên \[AM = \frac{1}{2}BC = MB\].

Do đó tam giác AMB cân

MP là đường cao nên đồng thời cũng là đường trung tuyến của tam giác

Suy ra AP = BP.

Xét tứ giác AMBR có: AP = BP; MP = PR (R đối xứng với M qua P)

Do đó AMBR là hình bình hành

Lại có MP vuông góc AB hay MR vuông góc AB

Suy ra AMBR là hình thoi.

c) Để AQMP là hình vuông thì AM là tia phân giác của \(\widehat {QAP}\)

Tam giác ABC có AM là trung tuyến đồng thời là đường phân giác nên là tam giác cân tại A.

Vậy tam giác ABC vuông cân tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có: \(OI \bot AC\) nên \(\widehat {OIC} = 90^\circ \)

               \(CH \bot AB\) nên \(\widehat {OHC} = 90^\circ \)

Xét tứ giác CHOI có \[\widehat {OIC} + \widehat {OHC} = 90^\circ + 90^\circ = 180^\circ \], mà hai góc này ở vị trí đối nhau trong tứ giác

Do đó tứ giác CHOI nội tiếp.

Suy ra bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Do Ax là tiếp tuyến của đường tròn (O) nên Ax AB, do đó \(\widehat {xAB} = 90^\circ \)

Xét tam giác AOM vuông tại A có đường cao AI, theo hệ thức lượng trong tam giác vuông ta có: OA2 = OI.OM

Mà OA = R (bán kính đường tròn) nên OI.OM = R2.

Theo bài, R = 6 cm và OM = 2R

Do đó \(OI = \frac{{{R^2}}}{{OM}} = \frac{{{R^2}}}{{2R}} = \frac{R}{2} = 3\left( {cm} \right)\).

c) Ta có điểm C nằm trên đường tròn (O), đường kính AB nên \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó AC BC tại C.

Lại có OI AC tại I

Suy ra OI // BC nên \(\widehat {AOM} = \widehat {ABC}\)

Hay \(\widehat {AOM} = \widehat {HBC}\)

Xét DAMO và DHCB có:

\(\widehat {MAO} = \widehat {CHB} = 90^\circ \) và \(\widehat {AOM} = \widehat {HBC}\)

Suy ra .

Gọi N là giao điểm của BC và Ax.

Xét DABN có OM // BN và O là trung điểm của AB nên M là trung điểm của AN.

Do CH // AN, theo hệ quả định lí Talet ta có: \(\frac{{HK}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KC}}{{MN}}\)

Do đó \(\frac{{HK}}{{AM}} = \frac{{KC}}{{MN}}\), mà AM = MN (do M là trung điểm của AN)

Suy ra HK = KC.

Lời giải

Lời giải

• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1

Û m ≠ ‒2.

• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û \(m \ne - \frac{1}{2}\).

Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.

Khi đó 0 = (2m + 1)xA – 2m – 3

Þ \({x_A} = \frac{{2m + 3}}{{2m + 1}}\). Suy ra \(A\left( {\frac{{2m + 3}}{{2m + 1}};0} \right)\).

• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.

Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.

Khi đó 0 = (m – 1)xB + m

Þ \({x_B} = \frac{{ - m}}{{m - 1}}\). Suy ra \(B\left( {\frac{{ - m}}{{m - 1}};0} \right)\).

Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.

\( \Leftrightarrow \frac{{2m + 3}}{{2m + 1}} = \frac{{ - m}}{{m - 1}}\)

Þ (2m + 3).(m – 1) = (2m + 1).(‒m)

Û 2m2 + m – 3 = –2m2 – m

Û 4m2 + 2m – 3 = 0

Û \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) (thỏa mãn).

Vậy \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) thỏa mãn yêu cầu đề bài.

Câu 3

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay