Câu hỏi:

11/07/2024 2,350

Cho hàm số bậc nhất \(y = \frac{3}{4}x + 3\) có đồ thị là đường thẳng (d).

a) Vẽ (d) trên mặt phẳng toạ độ Oxy.

b) Tính khoảng cách từ gốc toạ độ O đến đường thẳng (d).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Xét hàm số \(y = \frac{3}{4}x + 3\) (d).

• Giao điểm của d với trục tung là:

Với x = 0 ta có y = 3

Do đó d cắt trục tung tại điểm A(0; 3).

• Giao điểm của d với trục hoành là:

Với y = 0 ta có x = –4.

Do đó d cắt trục hoành tại điểm B(–4; 0).

Vậy đồ thị hàm số đã cho là đường thẳng đi qua hai điểm A(0; 3) và B(–4; 0) (hình vẽ).

Media VietJack

b) Kẻ OH D, khi đó khoảng cách từ O đến đường thẳng d là độ dài đoạn thẳng OH.

Media VietJack

Ta có: A(0; 3) suy ra OA = 3;

           B(–4; 0) suy ra OB = 4.

Xét ∆OAB vuông tại O, theo hệ thức lượng trong tam giác vuông ta có:

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\)

Do đó \(\frac{1}{{O{H^2}}} = \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} = \frac{{25}}{{144}}\)

Suy ra \(O{H^2} = \frac{{144}}{{25}}\) nên \(OH = \frac{{12}}{5} = 2,4\).

Vậy khoảng cách từ gốc toạ độ O đến đường thẳng (d) bằng 2,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 19,397

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 16,369

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 13,172

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 10,854

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 9,013

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 8,009

Câu 7:

Cho tam giác ABC vuông tại A, đường cao AH.

a) Chứng minh: AH.BC = AB.AC.

b) Gọi M là điểm nằm ở giữa B và C. Kẻ MN vuông với AB, MP vuông góc với AC (N thuộc AB, P thuộc AC ) tứ giác ANMP là hình gì? Vì sao?

c) Tính số đo góc NHP?

d) Tìm vị trí M trên BC để NP có độ dài ngắn nhất?

Xem đáp án » 12/07/2024 5,898

Bình luận


Bình luận