Câu hỏi:
11/07/2024 1,640Cho hàm số bậc nhất \(y = \frac{3}{4}x + 3\) có đồ thị là đường thẳng (d).
a) Vẽ (d) trên mặt phẳng toạ độ Oxy.
b) Tính khoảng cách từ gốc toạ độ O đến đường thẳng (d).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét hàm số \(y = \frac{3}{4}x + 3\) (d).
• Giao điểm của d với trục tung là:
Với x = 0 ta có y = 3
Do đó d cắt trục tung tại điểm A(0; 3).
• Giao điểm của d với trục hoành là:
Với y = 0 ta có x = –4.
Do đó d cắt trục hoành tại điểm B(–4; 0).
Vậy đồ thị hàm số đã cho là đường thẳng đi qua hai điểm A(0; 3) và B(–4; 0) (hình vẽ).
b) Kẻ OH ⊥ D, khi đó khoảng cách từ O đến đường thẳng d là độ dài đoạn thẳng OH.
Ta có: A(0; 3) suy ra OA = 3;
B(–4; 0) suy ra OB = 4.
Xét ∆OAB vuông tại O, theo hệ thức lượng trong tam giác vuông ta có:
\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\)
Do đó \(\frac{1}{{O{H^2}}} = \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} = \frac{{25}}{{144}}\)
Suy ra \(O{H^2} = \frac{{144}}{{25}}\) nên \(OH = \frac{{12}}{5} = 2,4\).
Vậy khoảng cách từ gốc toạ độ O đến đường thẳng (d) bằng 2,4.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Câu 5:
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Câu 6:
Câu 7:
về câu hỏi!