Câu hỏi:

23/03/2023 492

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) trong mỗi trường hợp sau:

a) \(\overrightarrow a = \left( { - 3;1} \right),\overrightarrow b = \left( {2;6} \right);\)

b) \(\overrightarrow a = \left( {3;1} \right),\overrightarrow b = \left( {2;4} \right);\)

c) \(\overrightarrow a = \left( { - \sqrt 2 ;1} \right),\overrightarrow b = \left( {2; - \sqrt 2 } \right).\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Với \(\overrightarrow a = \left( { - 3;1} \right)\)\(\overrightarrow b = \left( {2;6} \right)\) ta có \(\overrightarrow a .\overrightarrow b = \left( { - 3} \right).2 + 1.6 = 0\).

\( \Rightarrow \overrightarrow a \bot \overrightarrow b \)

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ .\)

b) Với \(\overrightarrow a = \left( {3;1} \right)\)\(\overrightarrow b = \left( {2;4} \right)\) ta có:

\(\left| {\overrightarrow a } \right| = \sqrt {{3^2} + {1^2}} = \sqrt {10} ;\)

\(\left| {\overrightarrow b } \right| = \sqrt {{2^2} + {4^2}} = \sqrt {20} = 2\sqrt 5 \);

\(\overrightarrow a .\overrightarrow b = 3.2 + 1.4 = 10\);

\( \Rightarrow c{\rm{os}}\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{1}{{\sqrt 2 }}\)

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ .\)

c) Với \[\overrightarrow a = \left( { - \sqrt 2 ;1} \right)\]\[\overrightarrow b = \left( {2; - \sqrt 2 } \right)\] ta có:

\(\left| {\overrightarrow a } \right| = \sqrt {{{\left( { - \sqrt 2 } \right)}^2} + {1^2}} = \sqrt 3 ;\)

\(\left| {\overrightarrow b } \right| = \sqrt {{2^2} + {{\left( { - \sqrt 2 } \right)}^2}} = \sqrt 6 \);

\(\overrightarrow a .\overrightarrow b = \left( { - \sqrt 2 } \right).2 + 1.\left( { - \sqrt 2 } \right) = - 3\sqrt 2 \).

 \( \Rightarrow c{\rm{os}}\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3\sqrt 2 }}{{\sqrt 3 .\sqrt 6 }} = - 1\)

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 19,397

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 16,369

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 13,172

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 10,854

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 9,013

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 8,010

Câu 7:

Cho tam giác ABC vuông tại A, đường cao AH.

a) Chứng minh: AH.BC = AB.AC.

b) Gọi M là điểm nằm ở giữa B và C. Kẻ MN vuông với AB, MP vuông góc với AC (N thuộc AB, P thuộc AC ) tứ giác ANMP là hình gì? Vì sao?

c) Tính số đo góc NHP?

d) Tìm vị trí M trên BC để NP có độ dài ngắn nhất?

Xem đáp án » 12/07/2024 5,898

Bình luận


Bình luận