Câu hỏi:
23/03/2023 169Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong mỗi trường hợp sau:
a) \(\overrightarrow a = \left( { - 3;1} \right),\overrightarrow b = \left( {2;6} \right);\)
b) \(\overrightarrow a = \left( {3;1} \right),\overrightarrow b = \left( {2;4} \right);\)
c) \(\overrightarrow a = \left( { - \sqrt 2 ;1} \right),\overrightarrow b = \left( {2; - \sqrt 2 } \right).\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Với \(\overrightarrow a = \left( { - 3;1} \right)\) và \(\overrightarrow b = \left( {2;6} \right)\) ta có \(\overrightarrow a .\overrightarrow b = \left( { - 3} \right).2 + 1.6 = 0\).
\( \Rightarrow \overrightarrow a \bot \overrightarrow b \)
\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ .\)
b) Với \(\overrightarrow a = \left( {3;1} \right)\) và \(\overrightarrow b = \left( {2;4} \right)\) ta có:
• \(\left| {\overrightarrow a } \right| = \sqrt {{3^2} + {1^2}} = \sqrt {10} ;\)
• \(\left| {\overrightarrow b } \right| = \sqrt {{2^2} + {4^2}} = \sqrt {20} = 2\sqrt 5 \);
• \(\overrightarrow a .\overrightarrow b = 3.2 + 1.4 = 10\);
\( \Rightarrow c{\rm{os}}\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{1}{{\sqrt 2 }}\)
\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ .\)
c) Với \[\overrightarrow a = \left( { - \sqrt 2 ;1} \right)\] và \[\overrightarrow b = \left( {2; - \sqrt 2 } \right)\] ta có:
• \(\left| {\overrightarrow a } \right| = \sqrt {{{\left( { - \sqrt 2 } \right)}^2} + {1^2}} = \sqrt 3 ;\)
• \(\left| {\overrightarrow b } \right| = \sqrt {{2^2} + {{\left( { - \sqrt 2 } \right)}^2}} = \sqrt 6 \);
• \(\overrightarrow a .\overrightarrow b = \left( { - \sqrt 2 } \right).2 + 1.\left( { - \sqrt 2 } \right) = - 3\sqrt 2 \).
\( \Rightarrow c{\rm{os}}\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3\sqrt 2 }}{{\sqrt 3 .\sqrt 6 }} = - 1\)
\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ .\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Câu 5:
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Câu 6:
Câu 7:
về câu hỏi!