Câu hỏi:

23/03/2023 1,716

Cho tập X = {1; 2; 3; ....; 8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Chọn C

• Gọi số cần tìm là \(A = \overline {{a_1}{a_2}{a_3}{a_4}{b_1}{b_2}{b_3}{b_4}} \)

Ta có tổng các chữ số của A là 1 + 2 + 3 + 4 + .... + 8 = 36 chia hết cho 9 nên A chia hết cho 9.

Do 9 và 1111 có ƯCLN là 1 nên A chia hết cho 9999.

Đặt \(x = \overline {{a_1}{a_2}{a_3}a} ,y = \overline {{b_1}{b_2}{b_3}{b_4}} \).

Ta có: \(A = 10000x + y = 9999x + \left( {x + y} \right)\) chia hết cho 9999

Þ x + y chia hết cho 9999

Mà \(0 < x + y < 2.9999 \Rightarrow x + y = 9999\).

\(x = 1000{a_1} + 100{a_2} + 10{a_3} + {a_4}\); \(y = 1000{b_1} + 100{b_2} + 10{b_3} + {b_4}\).

\( \Rightarrow x + y = 1000\left( {{a_1} + {b_1}} \right) + 100\left( {{a_2} + {b_2}} \right) + 10\left( {{a_3} + {b_3}} \right) + \left( {{a_4} + {b_4}} \right) = 9999\)

\( \Rightarrow {a_1} + {b_1} = {a_2} + {b_2} = {a_3} + {b_3} = {a_4} + {b_4} = 9\)

+ Từ tập X có 4 cặp số (1; 8), (2; 7), (3; 6), (4; 5) nên có: 8 cách chọn a1; 6 cách chọn a2; 4 cách chọn a3 và 2 cách chọn a4.

 Vì ai và bi tạo thành một cặp để ai + bi = 9 nên chọn ai có luôn bi­.

Þ Số các số cần tìm là: 8.6.4.2 = 384 số.

Vậy xác suất cần tìm là: \(P = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{384}}{{8!}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có: \(OI \bot AC\) nên \(\widehat {OIC} = 90^\circ \)

               \(CH \bot AB\) nên \(\widehat {OHC} = 90^\circ \)

Xét tứ giác CHOI có \[\widehat {OIC} + \widehat {OHC} = 90^\circ + 90^\circ = 180^\circ \], mà hai góc này ở vị trí đối nhau trong tứ giác

Do đó tứ giác CHOI nội tiếp.

Suy ra bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Do Ax là tiếp tuyến của đường tròn (O) nên Ax AB, do đó \(\widehat {xAB} = 90^\circ \)

Xét tam giác AOM vuông tại A có đường cao AI, theo hệ thức lượng trong tam giác vuông ta có: OA2 = OI.OM

Mà OA = R (bán kính đường tròn) nên OI.OM = R2.

Theo bài, R = 6 cm và OM = 2R

Do đó \(OI = \frac{{{R^2}}}{{OM}} = \frac{{{R^2}}}{{2R}} = \frac{R}{2} = 3\left( {cm} \right)\).

c) Ta có điểm C nằm trên đường tròn (O), đường kính AB nên \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó AC BC tại C.

Lại có OI AC tại I

Suy ra OI // BC nên \(\widehat {AOM} = \widehat {ABC}\)

Hay \(\widehat {AOM} = \widehat {HBC}\)

Xét DAMO và DHCB có:

\(\widehat {MAO} = \widehat {CHB} = 90^\circ \) và \(\widehat {AOM} = \widehat {HBC}\)

Suy ra .

Gọi N là giao điểm của BC và Ax.

Xét DABN có OM // BN và O là trung điểm của AB nên M là trung điểm của AN.

Do CH // AN, theo hệ quả định lí Talet ta có: \(\frac{{HK}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KC}}{{MN}}\)

Do đó \(\frac{{HK}}{{AM}} = \frac{{KC}}{{MN}}\), mà AM = MN (do M là trung điểm của AN)

Suy ra HK = KC.

Lời giải

Lời giải

• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1

Û m ≠ ‒2.

• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û \(m \ne - \frac{1}{2}\).

Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.

Khi đó 0 = (2m + 1)xA – 2m – 3

Þ \({x_A} = \frac{{2m + 3}}{{2m + 1}}\). Suy ra \(A\left( {\frac{{2m + 3}}{{2m + 1}};0} \right)\).

• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.

Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.

Khi đó 0 = (m – 1)xB + m

Þ \({x_B} = \frac{{ - m}}{{m - 1}}\). Suy ra \(B\left( {\frac{{ - m}}{{m - 1}};0} \right)\).

Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.

\( \Leftrightarrow \frac{{2m + 3}}{{2m + 1}} = \frac{{ - m}}{{m - 1}}\)

Þ (2m + 3).(m – 1) = (2m + 1).(‒m)

Û 2m2 + m – 3 = –2m2 – m

Û 4m2 + 2m – 3 = 0

Û \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) (thỏa mãn).

Vậy \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) thỏa mãn yêu cầu đề bài.

Câu 3

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP