Câu hỏi:

23/03/2023 890

Cho tập X = {1; 2; 3; ....; 8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Chọn C

• Gọi số cần tìm là \(A = \overline {{a_1}{a_2}{a_3}{a_4}{b_1}{b_2}{b_3}{b_4}} \)

Ta có tổng các chữ số của A là 1 + 2 + 3 + 4 + .... + 8 = 36 chia hết cho 9 nên A chia hết cho 9.

Do 9 và 1111 có ƯCLN là 1 nên A chia hết cho 9999.

Đặt \(x = \overline {{a_1}{a_2}{a_3}a} ,y = \overline {{b_1}{b_2}{b_3}{b_4}} \).

Ta có: \(A = 10000x + y = 9999x + \left( {x + y} \right)\) chia hết cho 9999

Þ x + y chia hết cho 9999

Mà \(0 < x + y < 2.9999 \Rightarrow x + y = 9999\).

\(x = 1000{a_1} + 100{a_2} + 10{a_3} + {a_4}\); \(y = 1000{b_1} + 100{b_2} + 10{b_3} + {b_4}\).

\( \Rightarrow x + y = 1000\left( {{a_1} + {b_1}} \right) + 100\left( {{a_2} + {b_2}} \right) + 10\left( {{a_3} + {b_3}} \right) + \left( {{a_4} + {b_4}} \right) = 9999\)

\( \Rightarrow {a_1} + {b_1} = {a_2} + {b_2} = {a_3} + {b_3} = {a_4} + {b_4} = 9\)

+ Từ tập X có 4 cặp số (1; 8), (2; 7), (3; 6), (4; 5) nên có: 8 cách chọn a1; 6 cách chọn a2; 4 cách chọn a3 và 2 cách chọn a4.

 Vì ai và bi tạo thành một cặp để ai + bi = 9 nên chọn ai có luôn bi­.

Þ Số các số cần tìm là: 8.6.4.2 = 384 số.

Vậy xác suất cần tìm là: \(P = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{384}}{{8!}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,805

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 14,571

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 12,068

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 10,197

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 8,185

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,735

Câu 7:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,399

Bình luận


Bình luận