Cho tập X = {1; 2; 3; ....; 8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: C
Chọn C
• Gọi số cần tìm là \(A = \overline {{a_1}{a_2}{a_3}{a_4}{b_1}{b_2}{b_3}{b_4}} \)
Ta có tổng các chữ số của A là 1 + 2 + 3 + 4 + .... + 8 = 36 chia hết cho 9 nên A chia hết cho 9.
Do 9 và 1111 có ƯCLN là 1 nên A chia hết cho 9999.
Đặt \(x = \overline {{a_1}{a_2}{a_3}a} ,y = \overline {{b_1}{b_2}{b_3}{b_4}} \).
Ta có: \(A = 10000x + y = 9999x + \left( {x + y} \right)\) chia hết cho 9999
Þ x + y chia hết cho 9999
Mà \(0 < x + y < 2.9999 \Rightarrow x + y = 9999\).
• \(x = 1000{a_1} + 100{a_2} + 10{a_3} + {a_4}\); \(y = 1000{b_1} + 100{b_2} + 10{b_3} + {b_4}\).
\( \Rightarrow x + y = 1000\left( {{a_1} + {b_1}} \right) + 100\left( {{a_2} + {b_2}} \right) + 10\left( {{a_3} + {b_3}} \right) + \left( {{a_4} + {b_4}} \right) = 9999\)
\( \Rightarrow {a_1} + {b_1} = {a_2} + {b_2} = {a_3} + {b_3} = {a_4} + {b_4} = 9\)
+ Từ tập X có 4 cặp số (1; 8), (2; 7), (3; 6), (4; 5) nên có: 8 cách chọn a1; 6 cách chọn a2; 4 cách chọn a3 và 2 cách chọn a4.
Vì ai và bi tạo thành một cặp để ai + bi = 9 nên chọn ai có luôn bi.
Þ Số các số cần tìm là: 8.6.4.2 = 384 số.
Vậy xác suất cần tìm là: \(P = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{384}}{{8!}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có: \(OI \bot AC\) nên \(\widehat {OIC} = 90^\circ \)
\(CH \bot AB\) nên \(\widehat {OHC} = 90^\circ \)
Xét tứ giác CHOI có \[\widehat {OIC} + \widehat {OHC} = 90^\circ + 90^\circ = 180^\circ \], mà hai góc này ở vị trí đối nhau trong tứ giác
Do đó tứ giác CHOI nội tiếp.
Suy ra bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Do Ax là tiếp tuyến của đường tròn (O) nên Ax ⊥ AB, do đó \(\widehat {xAB} = 90^\circ \)
Xét tam giác AOM vuông tại A có đường cao AI, theo hệ thức lượng trong tam giác vuông ta có: OA2 = OI.OM
Mà OA = R (bán kính đường tròn) nên OI.OM = R2.
Theo bài, R = 6 cm và OM = 2R
Do đó \(OI = \frac{{{R^2}}}{{OM}} = \frac{{{R^2}}}{{2R}} = \frac{R}{2} = 3\left( {cm} \right)\).
c) Ta có điểm C nằm trên đường tròn (O), đường kính AB nên \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó AC ⊥ BC tại C.
Lại có OI ⊥ AC tại I
Suy ra OI // BC nên \(\widehat {AOM} = \widehat {ABC}\)
Hay \(\widehat {AOM} = \widehat {HBC}\)
Xét DAMO và DHCB có:
\(\widehat {MAO} = \widehat {CHB} = 90^\circ \) và \(\widehat {AOM} = \widehat {HBC}\)
Suy ra .
Gọi N là giao điểm của BC và Ax.
Xét DABN có OM // BN và O là trung điểm của AB nên M là trung điểm của AN.
Do CH // AN, theo hệ quả định lí Talet ta có: \(\frac{{HK}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KC}}{{MN}}\)
Do đó \(\frac{{HK}}{{AM}} = \frac{{KC}}{{MN}}\), mà AM = MN (do M là trung điểm của AN)
Suy ra HK = KC.
Lời giải
Lời giải
• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1
Û m ≠ ‒2.
• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û \(m \ne - \frac{1}{2}\).
Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.
Khi đó 0 = (2m + 1)xA – 2m – 3
Þ \({x_A} = \frac{{2m + 3}}{{2m + 1}}\). Suy ra \(A\left( {\frac{{2m + 3}}{{2m + 1}};0} \right)\).
• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.
Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.
Khi đó 0 = (m – 1)xB + m
Þ \({x_B} = \frac{{ - m}}{{m - 1}}\). Suy ra \(B\left( {\frac{{ - m}}{{m - 1}};0} \right)\).
Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.
\( \Leftrightarrow \frac{{2m + 3}}{{2m + 1}} = \frac{{ - m}}{{m - 1}}\)
Þ (2m + 3).(m – 1) = (2m + 1).(‒m)
Û 2m2 + m – 3 = –2m2 – m
Û 4m2 + 2m – 3 = 0
Û \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) (thỏa mãn).
Vậy \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) thỏa mãn yêu cầu đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.