Câu hỏi:
12/07/2024 418Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có:
\(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} = \frac{{a + b}}{{ab}} + \frac{2}{{a + b}}\)
\( = \frac{{a + b}}{1} + \frac{2}{{a + b}}\)
\( = \frac{{a + b}}{2} + \frac{{a + b}}{2} + \frac{2}{{a + b}}\)
Áp dụng bất đẳng thức Cosi cho hai số \(a > 0,b > 0\) ta có:
\(a + b \ge 2\sqrt {ab} \)
\( \Leftrightarrow \frac{{a + b}}{2} \ge \sqrt {ab} = 1\)
Áp dụng bất đẳng thức Cosi cho hai số \(\frac{{a + b}}{2} > 0\) và \(\frac{2}{{a + b}} > 0\), ta có:
\(\frac{{a + b}}{2} + \frac{2}{{a + b}} \ge 2\sqrt {\frac{{a + b}}{2}.\frac{2}{{a + b}}} = 2\sqrt 1 = 2\)
Do đó \(\frac{{a + b}}{2} + \frac{{a + b}}{2} + \frac{2}{{a + b}} \ge 1 + 2 = 3\)
Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}a = b\\\frac{{a + b}}{2} = \frac{2}{{a + b}}\\ab = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b\\{\left( {a + b} \right)^2} = 4\\ab = 1\end{array} \right.\)\( \Leftrightarrow a = b = 1\)
Vậy \(\frac{1}{a} + \frac{1}{b} + \frac{2}{{a + b}} \ge 3\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Câu 4:
Câu 5:
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Câu 6:
Câu 7:
về câu hỏi!