Câu hỏi:

04/07/2023 466

Nhân ngày 20 tháng 10 một cửa hàng thời trang giảm 30% giá niêm yết cho tất cả sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiện của cửa hàng thì được tặng thêm một voucher trị giá bằng 10% số tiền thanh toán tại quầy Thu Ngân:

a) Chị Hoa không có thẻ khách hàng thân thiện của cửa hàng, chị mua một chiếc váy có giá niêm yết là 1 050 000 đồng. Hỏi chị Hoa phải trả bao nhiêu tiền cho chiếc váy đó?

b) Cô Hà có thẻ khách hàng thân thiện, cô mua 1 chiếc túi xách và nhận được một voucher trị giá 91 000 đồng. Hỏi giá niêm yết ban đầu của túi xách là bao nhiêu?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Chị Hoa phải trả số tiền là:

1 050 000 – 1 050 000 × 30% = 735 000 (đồng)

b) Giá chiếc túi đã giảm khi có thẻ khách hàng thân thiết là:

91 000 : 10% = 910 000 (đồng)

Giá chiếc túi ban đầu là:

910 000 : (1 – 30%) = 1 300 000 (đồng)

Vậy giá niêm yết ban đầu của túi xách là 1 300 000 đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh: \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Xem đáp án » 13/07/2024 14,152

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:

a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);

b) BC2 = 3AH2 + BE2 + CF2;

c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Xem đáp án » 13/07/2024 10,120

Câu 3:

Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)

a) Chứng minh rằng:  

b) Chứng minh rằng: CD = AC + BD

c) Kẻ OM CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.

Xem đáp án » 13/07/2024 8,917

Câu 4:

Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:

a) CD = AC + BD

b) CD là tiếp tuyến của đường tròn đường kính AB

c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).

Xem đáp án » 13/07/2024 6,936

Câu 5:

Tìm x biết:

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).

Xem đáp án » 13/07/2024 6,375

Câu 6:

Cho 3 tập hợp A = (–∞; 0), B = (1; +∞), C = (0; 1). Tìm (A B ) ∩ C.

Xem đáp án » 13/07/2024 5,053

Câu 7:

Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Xem đáp án » 13/07/2024 4,854

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store