Câu hỏi:

19/08/2025 1,246 Lưu

Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có:

3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6

(3x2 – 18x + 27) + 6y2 + 2z2 + 3y2z2 = 6 + 27

3(x – 3)2 + 6y2 + 2z2 + 3y2z2 = 33                                 (1)

Vì x, y, z nguyên nên z2 3 và 2z2 ≤ 33

Hay |z| ≤ 3

Mà z nguyên

Suy ra z = 0 hoặc z = 3

+) TH1: z = 0

(1)  3(x – 3)2 + 6y2 = 33       

(x – 3)2 + 2y2 = 11

Suy ra 2y2 ≤ 11

Do đó |y| ≤ 2

\( \Leftrightarrow \left[ \begin{array}{l}y = 0\\y = 1\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\left( {x - 3} \right)^2} = 11\\{\left( {x - 3} \right)^2} + 2 = 11\end{array} \right.\)

(x – 3)2 + 2 = 11 (vì x nguyên)

(x – 3)2 = 9 \( \Leftrightarrow \left[ \begin{array}{l}x - 3 = 3\\x - 3 = - 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 6\\x = 0\end{array} \right.\)

+) TH1: z = 3

(1) 3(x – 3)2 + 6y2 + 2 . 32 + 3y2 . 32 = 33                     

3(x – 3)2 + 33y2 + 18 = 33

(x – 3)2 + 11y2 = 5

Suy ra 11y2 ≤ 5

Do đó y = 0

Khi đó (x – 3)2 = 5 nên không tìm được giá trị x nguyên thỏa mãn phương trình

Vậy phương trình đã cho có nghiệm nguyên (x, y, z) là: (0; 1; 0), (0; –1; 0), (6; 1; 0), (6; –1; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Vì tam giác ACO vuông tại A

Nên \(\widehat {AOC} + \widehat {AC{\rm{O}}} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Ta có: \(\widehat {AOC} + \widehat {CD{\rm{O}}} + \widehat {DOB} = 180^\circ \)

Hay \(\widehat {AOC} + \widehat {DOB} = 180^\circ - \widehat {CD{\rm{O}}} = 180^\circ - 90^\circ = 90^\circ \)

Suy ra \(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\)

Xét ∆ACO và ∆BDO có

\(\widehat {CAO} = \widehat {DBO}\left( { = 90^\circ } \right)\)

\(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\) (Chứng minh trên)

Suy ra  (g.g)

b) Gọi E là giao điểm của CO và BD

Xét ∆ACO và ∆BEO có

\(\widehat {CAO} = \widehat {EBO}\left( { = 90^\circ } \right)\)

AO = BO (giả thiết)

\(\widehat {BOE} = \widehat {AOC}\) (hai góc đối đỉnh)

Suy ra ∆ACO và ∆BEO (g.c.g)

Do đó AC = BE, CO = OE (các cặp cạnh tương ứng)

Xét ∆COD và ∆EOD có

OD là cạnh chung;

\(\widehat {CO{\rm{D}}} = \widehat {EOD}\left( { = 90^\circ } \right)\);

CO = OE (chứng minh trên)

Suy ra ∆COD và ∆EOD (c.g.c)

Do đó CD = DE (hai cạnh tương ứng)

Ta có CD = DE = BD + BE = BD + AC

Vậy CD = AC + BD

c) Ta có AC AB và DB AB

Suy ra AC // BD

Do đó \(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (hai góc so le trong)

Xét ∆ANC và ∆DNB có

\(\widehat {ANC} = \widehat {BN{\rm{D}}}\) (hai góc đối đỉnh)

\(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (Chứng minh trên)

Suy ra  (g.g)

Do đó \(\frac{{AN}}{{ND}} = \frac{{AC}}{{B{\rm{D}}}}\)

Mà AC = BE nên \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}}\)

Ta có DC = DE (chứng minh câu a)

Suy ra tam giác DCE cân ở D

Mà DO là đường cao

Nên DO là phân giác của \(\widehat {C{\rm{D}}E}\)

Suy ra \(\widehat {{\rm{CD}}O} = \widehat {O{\rm{D}}E}\)

Xét ∆MOD và ∆BOD có

\(\widehat {{\rm{DMO}}} = \widehat {DBO}\left( { = 90^\circ } \right)\)

OD là cạnh chung

\(\widehat {{\rm{MD}}O} = \widehat {O{\rm{DB}}}\) (chứng minh trên)

Suy ra ∆MOD = ∆BOD (cạnh huyền – góc nhọn)

Do đó MD = BD, OM = OB

Mà OB = OA nên OM = OA

Xét ∆MOC và ∆AOC có

\(\widehat {{\rm{CMO}}} = \widehat {CAO}\left( { = 90^\circ } \right)\)

OC là cạnh chung

OM = OA (chứng minh trên)

Suy ra ∆MOC = ∆AOC (cạnh huyền – cạnh góc vuông)

Do đó MC = AC

Khi đó: \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}} = \frac{{AC}}{{BD}} = \frac{{CM}}{{DM}}\)

Suy ra MN // AC (định lí Talet đảo)

Vậy MN // AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP