Câu hỏi:

19/08/2025 524 Lưu

Cho A = (2m – 1; m + 3) và B = (–4; 5). Tìm m sao cho

a) A là tập hợp con của B.

b) B là tập hợp con của A.

c) A ∩ B = .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Ta có:

\[{\rm{A}} \subset B \Leftrightarrow \left\{ \begin{array}{l}2m - 1 \ge - 4\\m + 3 \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m \ge - 3\\m \le 2\end{array} \right. \Leftrightarrow \frac{{ - 3}}{2} \le m \le 2\].

b) Ta có:

\[B \subset A \Leftrightarrow \left\{ \begin{array}{l}2m - 1 \le - 4\\m + 3 \ge 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m \le - 3\\m \ge 2\end{array} \right. \Leftrightarrow m \in \emptyset \].

c) Ta có:

\(A \cap B = \emptyset \Leftrightarrow \left[ \begin{array}{l}m + 3 < 4\\2m - 1 > 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 1\\m > 3\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4)

2x2 – 8x + 3x – 12 + x2 – 2x – 5x + 10 = 3x2 – 12x – 5x + 20

–12x – 2 = – 17x + 20

5x = 22

\( \Leftrightarrow x = \frac{{22}}{5}\)

Vậy \(x = \frac{{22}}{5}\).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1)

24x2 – 9x + 16x – 6 – 4x2 – 16x – 7x – 28 = 10x2 – 2x + 5x – 1

20x2 – 16x – 34 = 10x2 + 3x – 1

10x2 – 19x – 33 = 0

10x2 – 30x + 11x – 33 = 0

10x(x – 3) + 11(x – 3) = 0

(10x + 11)(x – 3) = 0

\( \Leftrightarrow \left[ \begin{array}{l}10{\rm{x}} + 11 = 0\\x - 3 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{{ - 11}}{{10}}\\x = 3\end{array} \right.\)

Vậy \(x = \frac{{ - 11}}{{10}}\) hoặc x = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP