Câu hỏi:

13/07/2024 2,522

Cho tam giác ABC có các góc thỏa mãn: \(2c{\rm{osA + cosB + cosC = }}\frac{9}{4}\).

Tính \(\sin \frac{A}{2}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có:

\(2c{\rm{osA + cosB + cosC = }}\frac{9}{4}\)

\( \Leftrightarrow 2c{\rm{osA + 2cos}}\left( {\frac{{{\rm{B + C}}}}{2}} \right){\rm{cos}}\left( {\frac{{B - C}}{2}} \right){\rm{ = }}\frac{9}{4}\)

\( \Leftrightarrow c{\rm{osA + cos}}\left( {\frac{{{\rm{B + C}}}}{2}} \right){\rm{cos}}\left( {\frac{{B - C}}{2}} \right){\rm{ = }}\frac{9}{8}\)

\( \Leftrightarrow c{\rm{osA + sin}}\frac{A}{2}{\rm{cos}}\left( {\frac{{B - C}}{2}} \right){\rm{ = }}\frac{9}{8}\)

\( \Leftrightarrow 1 - 2{\sin ^2}\frac{A}{2}{\rm{ + }}\sin A{\rm{cos}}\left( {\frac{{B - C}}{2}} \right){\rm{ = }}\frac{9}{8}\)

\( \Leftrightarrow - 2{\sin ^2}\frac{A}{2}{\rm{ + }}\sin \frac{A}{2}{\rm{cos}}\left( {\frac{{B - C}}{2}} \right) - \frac{1}{8}{\rm{ = 0}}\)                          (1)

Để tồn tại góc A thì phương trình (1) phải có nghiệm \(\sin \frac{A}{2}\)

Suy ra ∆ ≥ 0

\( \Leftrightarrow co{s^2}\left( {\frac{{B - C}}{2}} \right) - 1 \ge 0\)

\( \Leftrightarrow cos\left( {\frac{{B - C}}{2}} \right) = 1\)

Khi đó \( - 2{\sin ^2}\frac{A}{2}{\rm{ + }}\sin \frac{A}{2} - \frac{1}{8}{\rm{ = 0}}\)

\( \Leftrightarrow {\sin ^2}\frac{A}{2}{\rm{ }} - \frac{1}{2}\sin \frac{A}{2} + \frac{1}{{16}}{\rm{ = 0}}\)

\( \Leftrightarrow {\left( {\sin \frac{A}{2} - \frac{1}{4}} \right)^2}{\rm{ = 0}}\)

\( \Leftrightarrow \sin \frac{A}{2} = \frac{1}{4}\)

Vậy \(\sin \frac{A}{2} = \frac{1}{4}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh: \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Xem đáp án » 13/07/2024 15,158

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:

a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);

b) BC2 = 3AH2 + BE2 + CF2;

c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Xem đáp án » 13/07/2024 11,768

Câu 3:

Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)

a) Chứng minh rằng:  

b) Chứng minh rằng: CD = AC + BD

c) Kẻ OM CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.

Xem đáp án » 13/07/2024 11,390

Câu 4:

Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:

a) CD = AC + BD

b) CD là tiếp tuyến của đường tròn đường kính AB

c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).

Xem đáp án » 13/07/2024 8,770

Câu 5:

Tìm x biết:

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).

Xem đáp án » 13/07/2024 7,594

Câu 6:

Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Xem đáp án » 13/07/2024 6,597

Câu 7:

Cho 3 tập hợp A = (–∞; 0), B = (1; +∞), C = (0; 1). Tìm (A B ) ∩ C.

Xem đáp án » 13/07/2024 5,321