Câu hỏi:
13/07/2024 2,293Cho hàm số y = x + 1 có đồ thị là (d) và hàm số y = –x + 3 có đồ thị là (d’)
a) Vẽ (d) và (d’) trên cùng một mặt phẳng tọa độ.
b) Hai đường thẳng (d) và (d’) cắt nhau tại C và cắt trục Ox theo thứ tự tại A và B. Tìm tọa độ các điểm A, B, C.
c) Tính chu vi và diện tích của tam giác ABC.
d) Tính góc tạo bởi đường thẳng y = x + 1 với trục Ox.
Quảng cáo
Trả lời:
Lời giải
a) Hàm số: y = x + 1
Cho x = 0 thì y = 0 + 1 = 1, ta có điểm M(0; 1)
Cho y = 0 thì 0 = x + 1 nên x = –1, ta có điểm P(–1; 0)
Đồ thị hàm số y = x + 1 là đường thẳng đi qua hai điểm M(0; 1) và P(–1; 0)
+) Hàm số: y = –x + 3
Cho x = 0 thì y = 0 + 3 = 3, ta có điểm N(0; 3)
Cho y = 0 thì 0 = –x + 3 nên x = 3, ta có điểm Q(3; 0)
Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm N(0; 3) và Q(3; 0)
Ta có hình vẽ sau:
b) Hoành độ của điểm C là nghiệm của phương trình
x + 1 = –x + 3
⇔ 2x = 2
⇔ x = 1
Suy ra y = 1 + 1 = 2
Vậy C(1; 2)
Hoành độ của điểm A là nghiệm của phương trình
x + 1 = 0 ⇔ x = –1
Suy ra A(–1; 0) ≡ P
Hoành độ của điểm B là nghiệm của phương trình
–x + 3 = 0 ⇔ x = 3
Suy ra B(3; 0) ≡ Q
c) Ta có AB = OA + OB = 1 + 3 = 4
Áp dụng định lý Pytago ta có
Chu vi tam giác ABC là:
Ta có:
Suy ra tam giác ABC vuông tại C
Diện tích tam giác ABC là
d) Xét tam giác ABC có
\(\sin {\rm{A}} = \frac{{BC}}{{AB}} = \frac{{2\sqrt 2 }}{4} = \frac{{\sqrt 2 }}{2}\)
Suy ra \(\widehat A = 45^\circ \)
Vậy góc tạo bởi đường thẳng y = x + 1 với trục Ox bằng 45°.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Câu 3:
Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)
a) Chứng minh rằng:
b) Chứng minh rằng: CD = AC + BD
c) Kẻ OM ⊥ CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.
Câu 4:
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:
a) CD = AC + BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).
Câu 5:
Tìm x biết:
a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).
b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).
Câu 6:
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận