Câu hỏi:

13/07/2024 1,392

Cho hàm số y = x + 1 có đồ thị là (d) và hàm số y = –x + 3 có đồ thị là (d’)

a) Vẽ (d) và (d’) trên cùng một mặt phẳng tọa độ.

b) Hai đường thẳng (d) và (d’) cắt nhau tại C và cắt trục Ox theo thứ tự tại A và B. Tìm tọa độ các điểm A, B, C.

c) Tính chu vi và diện tích của tam giác ABC.

d) Tính góc tạo bởi đường thẳng y = x + 1 với trục Ox.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Hàm số: y = x + 1

Cho x = 0 thì y = 0 + 1 = 1, ta có điểm M(0; 1)

Cho y = 0 thì 0 = x + 1 nên x = –1, ta có điểm P(–1; 0)

Đồ thị hàm số y = x + 1 là đường thẳng đi qua hai điểm M(0; 1) và P(–1; 0)

+) Hàm số: y = –x + 3

Cho x = 0 thì y = 0 + 3 = 3, ta có điểm N(0; 3)

Cho y = 0 thì 0 = –x + 3 nên x = 3, ta có điểm Q(3; 0)

Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm N(0; 3) và Q(3; 0)

Ta có hình vẽ sau:

Media VietJack

b) Hoành độ của điểm C là nghiệm của phương trình

x + 1 = –x + 3

2x = 2

x = 1

Suy ra y = 1 + 1 = 2

Vậy C(1; 2)

Hoành độ của điểm A là nghiệm của phương trình

x + 1 = 0 x = –1

Suy ra A(–1; 0) ≡ P

Hoành độ của điểm B là nghiệm của phương trình

–x + 3 = 0 x = 3

Suy ra B(3; 0) ≡ Q

c) Ta có AB = OA + OB = 1 + 3 = 4

Áp dụng định lý Pytago ta có

Media VietJack

Chu vi tam giác ABC là:

Media VietJack

Ta có:

Media VietJack

Suy ra tam giác ABC vuông tại C

Diện tích tam giác ABC là

Media VietJack

d) Xét tam giác ABC có

\(\sin {\rm{A}} = \frac{{BC}}{{AB}} = \frac{{2\sqrt 2 }}{4} = \frac{{\sqrt 2 }}{2}\)

Suy ra \(\widehat A = 45^\circ \)

Vậy góc tạo bởi đường thẳng y = x + 1 với trục Ox bằng 45°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh: \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Xem đáp án » 13/07/2024 13,813

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:

a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);

b) BC2 = 3AH2 + BE2 + CF2;

c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Xem đáp án » 13/07/2024 8,987

Câu 3:

Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)

a) Chứng minh rằng:  

b) Chứng minh rằng: CD = AC + BD

c) Kẻ OM CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.

Xem đáp án » 13/07/2024 7,866

Câu 4:

Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:

a) CD = AC + BD

b) CD là tiếp tuyến của đường tròn đường kính AB

c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).

Xem đáp án » 13/07/2024 6,359

Câu 5:

Tìm x biết:

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).

Xem đáp án » 13/07/2024 5,918

Câu 6:

Cho 3 tập hợp A = (–∞; 0), B = (1; +∞), C = (0; 1). Tìm (A B ) ∩ C.

Xem đáp án » 13/07/2024 4,878

Câu 7:

Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Xem đáp án » 13/07/2024 4,273

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store