Câu hỏi:
13/07/2024 1,734Cho hàm số y = x + 1 có đồ thị là (d) và hàm số y = –x + 3 có đồ thị là (d’)
a) Vẽ (d) và (d’) trên cùng một mặt phẳng tọa độ.
b) Hai đường thẳng (d) và (d’) cắt nhau tại C và cắt trục Ox theo thứ tự tại A và B. Tìm tọa độ các điểm A, B, C.
c) Tính chu vi và diện tích của tam giác ABC.
d) Tính góc tạo bởi đường thẳng y = x + 1 với trục Ox.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Hàm số: y = x + 1
Cho x = 0 thì y = 0 + 1 = 1, ta có điểm M(0; 1)
Cho y = 0 thì 0 = x + 1 nên x = –1, ta có điểm P(–1; 0)
Đồ thị hàm số y = x + 1 là đường thẳng đi qua hai điểm M(0; 1) và P(–1; 0)
+) Hàm số: y = –x + 3
Cho x = 0 thì y = 0 + 3 = 3, ta có điểm N(0; 3)
Cho y = 0 thì 0 = –x + 3 nên x = 3, ta có điểm Q(3; 0)
Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm N(0; 3) và Q(3; 0)
Ta có hình vẽ sau:
b) Hoành độ của điểm C là nghiệm của phương trình
x + 1 = –x + 3
⇔ 2x = 2
⇔ x = 1
Suy ra y = 1 + 1 = 2
Vậy C(1; 2)
Hoành độ của điểm A là nghiệm của phương trình
x + 1 = 0 ⇔ x = –1
Suy ra A(–1; 0) ≡ P
Hoành độ của điểm B là nghiệm của phương trình
–x + 3 = 0 ⇔ x = 3
Suy ra B(3; 0) ≡ Q
c) Ta có AB = OA + OB = 1 + 3 = 4
Áp dụng định lý Pytago ta có
Chu vi tam giác ABC là:
Ta có:
Suy ra tam giác ABC vuông tại C
Diện tích tam giác ABC là
d) Xét tam giác ABC có
\(\sin {\rm{A}} = \frac{{BC}}{{AB}} = \frac{{2\sqrt 2 }}{4} = \frac{{\sqrt 2 }}{2}\)
Suy ra \(\widehat A = 45^\circ \)
Vậy góc tạo bởi đường thẳng y = x + 1 với trục Ox bằng 45°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Câu 3:
Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)
a) Chứng minh rằng:
b) Chứng minh rằng: CD = AC + BD
c) Kẻ OM ⊥ CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.
Câu 4:
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:
a) CD = AC + BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).
Câu 5:
Tìm x biết:
a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).
b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).
Câu 6:
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận