Câu hỏi:

19/08/2025 782 Lưu

Cho tam giác ABC vuông tại A và đường cao AH. Biết \(\widehat A = 90^\circ \), AB = 15 cm, AC = 20 cm.

a) Tính cạnh BC.

b) Tính độ dài của AH, BH và HC.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì tam giác ABC vuông tại A

Nên BC2 = AB2 + AC2

Hay BC2 = 152 + 202 = 625

Suy ra BC = 25 (cm)

b) Xét tam giác ACB vuông ở A có AH BC

Theo hệ thức lượng trong tam giác vuông ta có

AC2 = CH . BC nên \(CH = \frac{{A{C^2}}}{{BC}} = \frac{{{{20}^2}}}{{25}} = 16\)

AB2 = BH . BC nên \(BH = \frac{{A{B^2}}}{{BC}} = \frac{{{{15}^2}}}{{25}} = 9\)

AH2 = BH . CH = 16 . 9 = 144

Suy ra AH = 12 (cm)

Vậy AH = 12 cm, BH = 9 cm, CH = 16 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4)

2x2 – 8x + 3x – 12 + x2 – 2x – 5x + 10 = 3x2 – 12x – 5x + 20

–12x – 2 = – 17x + 20

5x = 22

\( \Leftrightarrow x = \frac{{22}}{5}\)

Vậy \(x = \frac{{22}}{5}\).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1)

24x2 – 9x + 16x – 6 – 4x2 – 16x – 7x – 28 = 10x2 – 2x + 5x – 1

20x2 – 16x – 34 = 10x2 + 3x – 1

10x2 – 19x – 33 = 0

10x2 – 30x + 11x – 33 = 0

10x(x – 3) + 11(x – 3) = 0

(10x + 11)(x – 3) = 0

\( \Leftrightarrow \left[ \begin{array}{l}10{\rm{x}} + 11 = 0\\x - 3 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{{ - 11}}{{10}}\\x = 3\end{array} \right.\)

Vậy \(x = \frac{{ - 11}}{{10}}\) hoặc x = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP