Cho tam giác ABC vuông tại A và đường cao AH. Biết \(\widehat A = 90^\circ \), AB = 15 cm, AC = 20 cm.
a) Tính cạnh BC.
b) Tính độ dài của AH, BH và HC.
Cho tam giác ABC vuông tại A và đường cao AH. Biết \(\widehat A = 90^\circ \), AB = 15 cm, AC = 20 cm.
a) Tính cạnh BC.
b) Tính độ dài của AH, BH và HC.
Quảng cáo
Trả lời:
Lời giải

a) Vì tam giác ABC vuông tại A
Nên BC2 = AB2 + AC2
Hay BC2 = 152 + 202 = 625
Suy ra BC = 25 (cm)
b) Xét tam giác ACB vuông ở A có AH ⊥ BC
Theo hệ thức lượng trong tam giác vuông ta có
AC2 = CH . BC nên \(CH = \frac{{A{C^2}}}{{BC}} = \frac{{{{20}^2}}}{{25}} = 16\)
AB2 = BH . BC nên \(BH = \frac{{A{B^2}}}{{BC}} = \frac{{{{15}^2}}}{{25}} = 9\)
AH2 = BH . CH = 16 . 9 = 144
Suy ra AH = 12 (cm)
Vậy AH = 12 cm, BH = 9 cm, CH = 16 cm.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có:

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]
Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].
Lời giải
Lời giải
a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4)
⇔ 2x2 – 8x + 3x – 12 + x2 – 2x – 5x + 10 = 3x2 – 12x – 5x + 20
⇔ –12x – 2 = – 17x + 20
⇔ 5x = 22
\( \Leftrightarrow x = \frac{{22}}{5}\)
Vậy \(x = \frac{{22}}{5}\).
b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1)
⇔ 24x2 – 9x + 16x – 6 – 4x2 – 16x – 7x – 28 = 10x2 – 2x + 5x – 1
⇔ 20x2 – 16x – 34 = 10x2 + 3x – 1
⇔ 10x2 – 19x – 33 = 0
⇔ 10x2 – 30x + 11x – 33 = 0
⇔ 10x(x – 3) + 11(x – 3) = 0
⇔ (10x + 11)(x – 3) = 0
\( \Leftrightarrow \left[ \begin{array}{l}10{\rm{x}} + 11 = 0\\x - 3 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{{ - 11}}{{10}}\\x = 3\end{array} \right.\)
Vậy \(x = \frac{{ - 11}}{{10}}\) hoặc x = 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.