Câu hỏi:

13/07/2024 3,156

Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của (O) tại B và C cắt nhau tại M.

a) Chứng minh tứ giác BKCM nội tiếp.

b) Chứng minh E, M, F thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì điểm K nằm trên đường tròn ngoại tiếp ΔBDE nên tứ giác DKBE nội tiếp đường tròn

Suy ra \(\widehat {BEK} = \widehat {B{\rm{D}}K}\) (2 góc nội tiếp cùng chắn cung BK)

Hay \(\widehat {AEK} = \widehat {{\rm{FD}}K}\)

Vì tứ giác DKFC nội tiếp đường tròn nên \(\widehat {FCK} = \widehat {{\rm{FD}}K}\)

Suy ra \(\widehat {AEK} = \widehat {{\rm{FC}}K}\), hay \(\widehat {AEK} = \widehat {{\rm{AC}}K}\)

Do đó tứ giác AKCE nội tiếp đường tròn

Suy ra \(\widehat {K{\rm{AE}}} + \widehat {KCE} = 180^\circ \)

\(\widehat {KC{\rm{D}}} + \widehat {KCE} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {K{\rm{AE}}} = \widehat {KC{\rm{D}}}\) hay \(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\)

Do tứ giác BKDE nội tiếp đường tròn nên \(\widehat {KD{\rm{E}}} + \widehat {KBE} = 180^\circ \)

\(\widehat {KBA} + \widehat {KBE} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {KD{\rm{E}}} = \widehat {KBA}\) hay \(\widehat {{\rm{KBA}}} = \widehat {KDC}\)

Xét ΔDKC và ΔBKA có:

\(\widehat {{\rm{KBA}}} = \widehat {KDC}\) (chứng minh trên)

\(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\) (chứng minh trên)

Suy ra (g.g)

Do đó \(\frac{{KC}}{{K{\rm{A}}}} = \frac{{K{\rm{D}}}}{{KB}}\)

Hay \(\frac{{KC}}{{KD}} = \frac{{KA}}{{KB}}\)

Ta có: \(\widehat {BK{\rm{D}}} = \widehat {DKC} + \widehat {BKC}\); \(\widehat {AKC} = \widehat {BKA} + \widehat {BKC}\)

\(\widehat {DKC} = \widehat {BK{\rm{A}}}\), suy ra \(\widehat {DKB} = \widehat {CK{\rm{A}}}\)

Xét ΔKBD và ΔKAC có:

\(\widehat {DKB} = \widehat {CK{\rm{A}}}\) (chứng minh trên)

\(\frac{{KC}}{{KD}} = \frac{{KA}}{{KB}}\) (chứng minh trên)

Suy ra (c.g.c)

Do đó \(\widehat {KB{\rm{D}}} = \widehat {KAC}\)

Hay \(\widehat {KBF} = \widehat {KAF}\)

Suy ra tứ giác AKFB nội tiếp đường tròn

Do đó \(\widehat {BKF} = \widehat {{\rm{BAF}}}\) (2 góc nội tiếp chắn cung BF)

Suy ra \(\widehat {BKF} = \widehat {BAC} = \widehat {B{\rm{D}}C}\) (do \(\widehat {BAC},\widehat {B{\rm{D}}C}\) cùng chắn cung BC)                   (1)

Ta có: \(\widehat {B{\rm{D}}C} = \widehat {F{\rm{D}}C} = \widehat {FKC}\) (cùng chắn cung FC)                       (2)

Xét ΔBMC có \(\widehat {MBC} + \widehat {MCB} + \widehat {BMC} = 180^\circ \) (tổng ba góc trong một tam giác)

\(\widehat {MBC} = \widehat {BAC},\widehat {MCB} = \widehat {B{\rm{D}}C}\)(Góc tạo bởi tiếp tuyến và dây cung)

Suy ra \(\widehat {BAC} + \widehat {BDC} + \widehat {BMC} = 180^\circ \)                                              (3)

Từ (1); (2) và (3) suy ra \(\widehat {BKF} + \widehat {FKC} + \widehat {BMC} = 180^\circ \)

Hay \(\widehat {BKC} + \widehat {BMC} = 180^\circ \)

Do đó tứ giác BKCM nội tiếp đường tròn

b) Ta có \(\widehat {BKF} = \widehat {B{\rm{D}}C}\) (chứng minh câu a)

Suy ra \(\widehat {BKF} = \widehat {B{\rm{DE}}} = \widehat {BKE}\) (Do tứ giác DKBE nội tiếp đường tròn)

Mà 2 điểm F và E nằm cùng phía so với BK

Suy ra 3 điểm K; F; E thẳng hàng

Hay F nằm trên KE                                                   (*)

\(\widehat {BKF} = \widehat {BAC},\widehat {CKF} = \widehat {B{\rm{D}}C},\widehat {BAC} = \widehat {B{\rm{D}}C}\)

Nên \(\widehat {BKF} = \widehat {CKF}\)

Suy ra \(\widehat {BKE} = \widehat {CKE}\) (Do K; F; E thẳng hàng)

Do đó KE là phân giác của \(\widehat {BKC}\)                     (4)

Xét (O) có MB, MC là 2 tiếp tuyến cắt nhau tại M

Nên MB = MC

Do đó tam giác MBC cân tại M

Suy ra \(\widehat {MBC} = \widehat {MCB}\)

Xét tứ giác BKCM nội tiếp đường tròn có \(\widehat {MBC} = \widehat {MKC},\widehat {MCB} = \widehat {MKB}\)

Suy ra \(\widehat {MKC} = \widehat {MKB}\)

Do đó KM là phân giác của \(\widehat {BKC}\)                                         (5)

Từ (4) và (5) suy ra 3 điểm K; M; E thẳng hàng hay M nằm trên KE (**)

Từ (*) và (**) suy ra 3 điểm E; M; F thẳng hàng

Vậy 3 điểm E; M; F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC vuông tại A có AH BC, theo hệ thức lượng trong tam giác vuông ta có:

AB2 = BH . BC

AC2 = CH . BC

Xét tam giác ABH vuông tại H có HE AB, theo hệ thức lượng trong tam giác vuông ta có:

BH2 = BE . BA

Hay \(BE = \frac{{B{H^2}}}{{BA}}\)

Xét tam giác ACH vuông tại H có HF AC, theo hệ thức lượng trong tam giác vuông ta có:

CH2 = CF . CA

Hay \(CF = \frac{{C{H^2}}}{{CA}}\)

Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)

Suy ra  \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)

Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).

b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)

Suy ra AEHF là hình chữ nhật

Do đó AH = EF

 Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:

Media VietJack

Vậy BC2 = 3AH2 + BE2 + CF2

c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)

Media VietJack

Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay