Câu hỏi:

19/08/2025 3,849 Lưu

Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của (O) tại B và C cắt nhau tại M.

a) Chứng minh tứ giác BKCM nội tiếp.

b) Chứng minh E, M, F thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì điểm K nằm trên đường tròn ngoại tiếp ΔBDE nên tứ giác DKBE nội tiếp đường tròn

Suy ra \(\widehat {BEK} = \widehat {B{\rm{D}}K}\) (2 góc nội tiếp cùng chắn cung BK)

Hay \(\widehat {AEK} = \widehat {{\rm{FD}}K}\)

Vì tứ giác DKFC nội tiếp đường tròn nên \(\widehat {FCK} = \widehat {{\rm{FD}}K}\)

Suy ra \(\widehat {AEK} = \widehat {{\rm{FC}}K}\), hay \(\widehat {AEK} = \widehat {{\rm{AC}}K}\)

Do đó tứ giác AKCE nội tiếp đường tròn

Suy ra \(\widehat {K{\rm{AE}}} + \widehat {KCE} = 180^\circ \)

\(\widehat {KC{\rm{D}}} + \widehat {KCE} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {K{\rm{AE}}} = \widehat {KC{\rm{D}}}\) hay \(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\)

Do tứ giác BKDE nội tiếp đường tròn nên \(\widehat {KD{\rm{E}}} + \widehat {KBE} = 180^\circ \)

\(\widehat {KBA} + \widehat {KBE} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {KD{\rm{E}}} = \widehat {KBA}\) hay \(\widehat {{\rm{KBA}}} = \widehat {KDC}\)

Xét ΔDKC và ΔBKA có:

\(\widehat {{\rm{KBA}}} = \widehat {KDC}\) (chứng minh trên)

\(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\) (chứng minh trên)

Suy ra (g.g)

Do đó \(\frac{{KC}}{{K{\rm{A}}}} = \frac{{K{\rm{D}}}}{{KB}}\)

Hay \(\frac{{KC}}{{KD}} = \frac{{KA}}{{KB}}\)

Ta có: \(\widehat {BK{\rm{D}}} = \widehat {DKC} + \widehat {BKC}\); \(\widehat {AKC} = \widehat {BKA} + \widehat {BKC}\)

\(\widehat {DKC} = \widehat {BK{\rm{A}}}\), suy ra \(\widehat {DKB} = \widehat {CK{\rm{A}}}\)

Xét ΔKBD và ΔKAC có:

\(\widehat {DKB} = \widehat {CK{\rm{A}}}\) (chứng minh trên)

\(\frac{{KC}}{{KD}} = \frac{{KA}}{{KB}}\) (chứng minh trên)

Suy ra (c.g.c)

Do đó \(\widehat {KB{\rm{D}}} = \widehat {KAC}\)

Hay \(\widehat {KBF} = \widehat {KAF}\)

Suy ra tứ giác AKFB nội tiếp đường tròn

Do đó \(\widehat {BKF} = \widehat {{\rm{BAF}}}\) (2 góc nội tiếp chắn cung BF)

Suy ra \(\widehat {BKF} = \widehat {BAC} = \widehat {B{\rm{D}}C}\) (do \(\widehat {BAC},\widehat {B{\rm{D}}C}\) cùng chắn cung BC)                   (1)

Ta có: \(\widehat {B{\rm{D}}C} = \widehat {F{\rm{D}}C} = \widehat {FKC}\) (cùng chắn cung FC)                       (2)

Xét ΔBMC có \(\widehat {MBC} + \widehat {MCB} + \widehat {BMC} = 180^\circ \) (tổng ba góc trong một tam giác)

\(\widehat {MBC} = \widehat {BAC},\widehat {MCB} = \widehat {B{\rm{D}}C}\)(Góc tạo bởi tiếp tuyến và dây cung)

Suy ra \(\widehat {BAC} + \widehat {BDC} + \widehat {BMC} = 180^\circ \)                                              (3)

Từ (1); (2) và (3) suy ra \(\widehat {BKF} + \widehat {FKC} + \widehat {BMC} = 180^\circ \)

Hay \(\widehat {BKC} + \widehat {BMC} = 180^\circ \)

Do đó tứ giác BKCM nội tiếp đường tròn

b) Ta có \(\widehat {BKF} = \widehat {B{\rm{D}}C}\) (chứng minh câu a)

Suy ra \(\widehat {BKF} = \widehat {B{\rm{DE}}} = \widehat {BKE}\) (Do tứ giác DKBE nội tiếp đường tròn)

Mà 2 điểm F và E nằm cùng phía so với BK

Suy ra 3 điểm K; F; E thẳng hàng

Hay F nằm trên KE                                                   (*)

\(\widehat {BKF} = \widehat {BAC},\widehat {CKF} = \widehat {B{\rm{D}}C},\widehat {BAC} = \widehat {B{\rm{D}}C}\)

Nên \(\widehat {BKF} = \widehat {CKF}\)

Suy ra \(\widehat {BKE} = \widehat {CKE}\) (Do K; F; E thẳng hàng)

Do đó KE là phân giác của \(\widehat {BKC}\)                     (4)

Xét (O) có MB, MC là 2 tiếp tuyến cắt nhau tại M

Nên MB = MC

Do đó tam giác MBC cân tại M

Suy ra \(\widehat {MBC} = \widehat {MCB}\)

Xét tứ giác BKCM nội tiếp đường tròn có \(\widehat {MBC} = \widehat {MKC},\widehat {MCB} = \widehat {MKB}\)

Suy ra \(\widehat {MKC} = \widehat {MKB}\)

Do đó KM là phân giác của \(\widehat {BKC}\)                                         (5)

Từ (4) và (5) suy ra 3 điểm K; M; E thẳng hàng hay M nằm trên KE (**)

Từ (*) và (**) suy ra 3 điểm E; M; F thẳng hàng

Vậy 3 điểm E; M; F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

Media VietJack

a) Vì tam giác ACO vuông tại A

Nên \(\widehat {AOC} + \widehat {AC{\rm{O}}} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Ta có: \(\widehat {AOC} + \widehat {CD{\rm{O}}} + \widehat {DOB} = 180^\circ \)

Hay \(\widehat {AOC} + \widehat {DOB} = 180^\circ - \widehat {CD{\rm{O}}} = 180^\circ - 90^\circ = 90^\circ \)

Suy ra \(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\)

Xét ∆ACO và ∆BDO có

\(\widehat {CAO} = \widehat {DBO}\left( { = 90^\circ } \right)\)

\(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\) (Chứng minh trên)

Suy ra  (g.g)

b) Gọi E là giao điểm của CO và BD

Xét ∆ACO và ∆BEO có

\(\widehat {CAO} = \widehat {EBO}\left( { = 90^\circ } \right)\)

AO = BO (giả thiết)

\(\widehat {BOE} = \widehat {AOC}\) (hai góc đối đỉnh)

Suy ra ∆ACO và ∆BEO (g.c.g)

Do đó AC = BE, CO = OE (các cặp cạnh tương ứng)

Xét ∆COD và ∆EOD có

OD là cạnh chung;

\(\widehat {CO{\rm{D}}} = \widehat {EOD}\left( { = 90^\circ } \right)\);

CO = OE (chứng minh trên)

Suy ra ∆COD và ∆EOD (c.g.c)

Do đó CD = DE (hai cạnh tương ứng)

Ta có CD = DE = BD + BE = BD + AC

Vậy CD = AC + BD

c) Ta có AC AB và DB AB

Suy ra AC // BD

Do đó \(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (hai góc so le trong)

Xét ∆ANC và ∆DNB có

\(\widehat {ANC} = \widehat {BN{\rm{D}}}\) (hai góc đối đỉnh)

\(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (Chứng minh trên)

Suy ra  (g.g)

Do đó \(\frac{{AN}}{{ND}} = \frac{{AC}}{{B{\rm{D}}}}\)

Mà AC = BE nên \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}}\)

Ta có DC = DE (chứng minh câu a)

Suy ra tam giác DCE cân ở D

Mà DO là đường cao

Nên DO là phân giác của \(\widehat {C{\rm{D}}E}\)

Suy ra \(\widehat {{\rm{CD}}O} = \widehat {O{\rm{D}}E}\)

Xét ∆MOD và ∆BOD có

\(\widehat {{\rm{DMO}}} = \widehat {DBO}\left( { = 90^\circ } \right)\)

OD là cạnh chung

\(\widehat {{\rm{MD}}O} = \widehat {O{\rm{DB}}}\) (chứng minh trên)

Suy ra ∆MOD = ∆BOD (cạnh huyền – góc nhọn)

Do đó MD = BD, OM = OB

Mà OB = OA nên OM = OA

Xét ∆MOC và ∆AOC có

\(\widehat {{\rm{CMO}}} = \widehat {CAO}\left( { = 90^\circ } \right)\)

OC là cạnh chung

OM = OA (chứng minh trên)

Suy ra ∆MOC = ∆AOC (cạnh huyền – cạnh góc vuông)

Do đó MC = AC

Khi đó: \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}} = \frac{{AC}}{{BD}} = \frac{{CM}}{{DM}}\)

Suy ra MN // AC (định lí Talet đảo)

Vậy MN // AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP