Câu hỏi:
13/07/2024 1,426Quảng cáo
Trả lời:
Lời giải
a) Ta có CO, OA, OB là bánh kính, AB là đường kính
Vì I là trung điểm của OA
Xét (O) có
AO là một phần của đường kính
CD là dây cung không đi qua tâm
AO ⊥ CD tại I
Suy ra I là trung điểm của CD (quan hệ giữa đường kính và dây cung)
Xét tam giác OIC vuông tại I có
CO2 = CI2 + IO2 (Định lý Pytago)
Hay 102 = CI2 + 52
Suy ra \(CI = 5\sqrt 3 \)
Do đó \(C{\rm{D}} = 2CI = 2.5\sqrt 3 = 10\sqrt 3 \) (cm)
b) Xét tam giác COI có:
Xét tam giác AOC có OC = OA
Nên tam giác AOC cân tại O
Mà \(\widehat {COA} = 60^\circ \) nên tam giác AOC đều
Do đó OA = OC = AC
Mà OA = OM nên CA = AM = AO
Do đó \(CA = \frac{1}{2}OM\)
Xét tam giác CMO có \(CA = \frac{1}{2}OM\)
Suy ra tam giác COM vuông tại C nên OC ⊥ CM
Xét (O) có OC ⊥ CM, OC là bán kính
Suy ra CM là tiếp tuyến của (O)
Vậy MC là tiếp tuyến của đường tròn (O).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có:
Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]
Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].
Lời giải
Lời giải
a) Xét tam giác ABC vuông tại A có AH ⊥ BC, theo hệ thức lượng trong tam giác vuông ta có:
AB2 = BH . BC
AC2 = CH . BC
Xét tam giác ABH vuông tại H có HE ⊥ AB, theo hệ thức lượng trong tam giác vuông ta có:
BH2 = BE . BA
Hay \(BE = \frac{{B{H^2}}}{{BA}}\)
Xét tam giác ACH vuông tại H có HF ⊥ AC, theo hệ thức lượng trong tam giác vuông ta có:
CH2 = CF . CA
Hay \(CF = \frac{{C{H^2}}}{{CA}}\)
Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)
Suy ra \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)
Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).
b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)
Suy ra AEHF là hình chữ nhật
Do đó AH = EF
Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:
Vậy BC2 = 3AH2 + BE2 + CF2
c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)
Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)