Câu hỏi:

19/08/2025 1,533 Lưu

Cho đường tròn tâm O đường kính AB. Vẽ dây CD đi qua trung điểm I của OA và vuông góc với OA. a) Tính độ dài dây CD biết AB = 20 cm. b) Trên tia đối của tia AO, lấy điểm M sao cho AM = AO. Chứng minh MC là tiếp tuyến của đường tròn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có CO, OA, OB là bánh kính, AB là đường kính

Media VietJack

Vì I là trung điểm của OA

Media VietJack

Xét (O) có

AO là một phần của đường kính

CD là dây cung không đi qua tâm

AO CD tại I

Suy ra I là trung điểm của CD (quan hệ giữa đường kính và dây cung)

Media VietJack

Xét tam giác OIC vuông tại I có

CO2 = CI2 + IO2 (Định lý Pytago)

Hay 102 = CI2 + 52

Suy ra \(CI = 5\sqrt 3 \)

Do đó \(C{\rm{D}} = 2CI = 2.5\sqrt 3 = 10\sqrt 3 \) (cm)

b) Xét tam giác COI có:

Media VietJack

Xét tam giác AOC có OC = OA

Nên tam giác AOC cân tại O

\(\widehat {COA} = 60^\circ \) nên tam giác AOC đều

Do đó OA = OC = AC

Mà OA = OM nên CA = AM = AO

Do đó \(CA = \frac{1}{2}OM\)

Xét tam giác CMO có \(CA = \frac{1}{2}OM\)

Suy ra tam giác COM vuông tại C nên OC CM

Xét (O) có OC CM, OC là bán kính

Suy ra CM là tiếp tuyến của (O)

Vậy MC là tiếp tuyến của đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

Media VietJack

Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]

Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].

Lời giải

Lời giải

a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4)

2x2 – 8x + 3x – 12 + x2 – 2x – 5x + 10 = 3x2 – 12x – 5x + 20

–12x – 2 = – 17x + 20

5x = 22

\( \Leftrightarrow x = \frac{{22}}{5}\)

Vậy \(x = \frac{{22}}{5}\).

b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1)

24x2 – 9x + 16x – 6 – 4x2 – 16x – 7x – 28 = 10x2 – 2x + 5x – 1

20x2 – 16x – 34 = 10x2 + 3x – 1

10x2 – 19x – 33 = 0

10x2 – 30x + 11x – 33 = 0

10x(x – 3) + 11(x – 3) = 0

(10x + 11)(x – 3) = 0

\( \Leftrightarrow \left[ \begin{array}{l}10{\rm{x}} + 11 = 0\\x - 3 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{{ - 11}}{{10}}\\x = 3\end{array} \right.\)

Vậy \(x = \frac{{ - 11}}{{10}}\) hoặc x = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP