Câu hỏi:
13/07/2024 2,714Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Kẻ AH ⊥ BC
Xét tam giác ABH có
AH = AB . sinB = 12 . sin42° ≈ 8 (cm)
Áp dụng định lý Pytago trong tam giác AHB vuông tại H có
BH2 = AB2 – AH2 = 122 – 82 = 80
Suy ra \(BH = 4\sqrt 5 \) (cm)
Khi đó \(CH = BC - BH = 22 - 4\sqrt 5 \)
Áp dụng định lý Pytago trong tam giác AHC vuông tại H có
AC2 = AH2 + CH2
Suy ra \[{\rm{A}}C = \sqrt {{8^2} + {{\left( {22 - 4\sqrt 5 } \right)}^2}} \approx 15,3\] (cm)
Mà \[\sin C = \frac{{AH}}{{AC}} = \frac{8}{{15,3}}\]
Suy ra \(\widehat C \approx 31^\circ \)
Xét tam giác ABC có
\(\widehat {BAC} + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong một tam giác)
Hay \(\widehat {BAC} + 42^\circ + 31^\circ = 180^\circ \)
Suy ra \(\widehat {BAC} = 107^\circ \)
Vậy \(\widehat {BAC} = 107^\circ ;\widehat C = 31^\circ ;AC = 15,3cm.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Câu 3:
Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)
a) Chứng minh rằng:
b) Chứng minh rằng: CD = AC + BD
c) Kẻ OM ⊥ CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.
Câu 4:
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:
a) CD = AC + BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).
Câu 5:
Tìm x biết:
a) (2x + 3)(x – 4) + (x – 5)(x – 2) = (3x – 5)(x – 4).
b) (8x – 3)(3x + 2) – (4x + 7)(x + 4) = (2x + 1)(5x – 1).
Câu 6:
Câu 7:
về câu hỏi!