Câu hỏi:
04/07/2023 996Quảng cáo
Trả lời:
Lời giải
Đáp án dúng là: D
• Ta có OABC là hình bình hành
Suy ra \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OE} = \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow 0 \) (vì O là trung điểm của BE)
Do đó A đúng
• Ta có: \(\overrightarrow {BC} = \overrightarrow {AO} \) ( ABCO là hình bình hành)
\(\overrightarrow {F{\rm{E}}} = \overrightarrow {O{\rm{D}}} \) (FODE là hình bình hành)
Suy ra \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AO} + \overrightarrow {O{\rm{D}}} = \overrightarrow {A{\rm{D}}} \)
Do đó B đúng
• Ta có OABC là hình bình hành
Suy ra \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OB} = \overrightarrow {OB} + \overrightarrow {OB} = \overrightarrow {EB} \)
Do đó C đúng
Vậy ta chọn đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có:
Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]
Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].
Lời giải
Lời giải
a) Xét tam giác ABC vuông tại A có AH ⊥ BC, theo hệ thức lượng trong tam giác vuông ta có:
AB2 = BH . BC
AC2 = CH . BC
Xét tam giác ABH vuông tại H có HE ⊥ AB, theo hệ thức lượng trong tam giác vuông ta có:
BH2 = BE . BA
Hay \(BE = \frac{{B{H^2}}}{{BA}}\)
Xét tam giác ACH vuông tại H có HF ⊥ AC, theo hệ thức lượng trong tam giác vuông ta có:
CH2 = CF . CA
Hay \(CF = \frac{{C{H^2}}}{{CA}}\)
Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)
Suy ra \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)
Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).
b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)
Suy ra AEHF là hình chữ nhật
Do đó AH = EF
Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:
Vậy BC2 = 3AH2 + BE2 + CF2
c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)
Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.