Cho tam giác ABC cân tại B. Trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N sao cho AM = CN. Kẻ BH ⊥ AC tại H.
a) Chứng minh AH = HC.
b) Chứng minh ∆BAN = ∆BCM.
c) Gọi O là giao điểm của AN và CM. Chứng minh 3 điểm B, O, H thẳng hàng.
Cho tam giác ABC cân tại B. Trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N sao cho AM = CN. Kẻ BH ⊥ AC tại H.
a) Chứng minh AH = HC.
b) Chứng minh ∆BAN = ∆BCM.
c) Gọi O là giao điểm của AN và CM. Chứng minh 3 điểm B, O, H thẳng hàng.
Quảng cáo
Trả lời:
Lời giải
a) Xét tam giác ABC cân tại B có BH là đường cao nên đồng thời là đường trung tuyến
Do đó AH = CH.
b) Vì tam giác ABC cân tại B nên AB = BC
Ta có: AB = AM + MB; BC = BN + NC
Mà AM = CN (giả thiết) nên BM = BN
Xét ∆BAN và ∆BCM có
BM = BN (chứng minh trên);
Chung góc \(\widehat {ABC}\);
AB = BC (chứng minh trên)
Suy ra ∆BAN = ∆BCM (c.g.c)
c) Vì ∆BAN = ∆BCM (chứng minh câu b)
Nên \(\widehat {BAN} = \widehat {BCM}\) (hai góc tương ứng)
Xét tam giác AMO có
\(\widehat {AM{\rm{O}}} + \widehat {AOM} + \widehat {MAO} = 180^\circ \) (tổng ba góc trong một tam giác)
Xét tam giác CNO có
\(\widehat {{\rm{CNO}}} + \widehat {CON} + \widehat {NCO} = 180^\circ \) (tổng ba góc trong một tam giác)
Mà \(\widehat {MAO} = \widehat {NCO},\widehat {MOA} = \widehat {NOC}\)
Suy ra \(\widehat {AM{\rm{O}}} = \widehat {CNO}\)
Xét ∆MOA và ∆NOC có
\(\widehat {AM{\rm{O}}} = \widehat {CNO}\) (chứng minh trên);
AM = CN (giả thiết);
\(\widehat {MAO} = \widehat {NCO}\) (chứng minh trên)
Suy ra ∆MOA = ∆NOC (g.c.g)
Do đó OA = OC (hai cạnh tương ứng)
Xét ∆BOA và ∆BOC có
OA = OC (chứng minh trên);
\(\widehat {BAO} = \widehat {BCO}\) (chứng minh trên);
BA = BC (chứng minh câu b)
Suy ra ∆BOA = ∆BOC (c.g.c)
Do đó \(\widehat {ABO} = \widehat {CBO}\) (hai góc tương ứng)
Suy ra BO là tia phân giác của \(\widehat {ABC}\) (1)
Xét tam giác ABC cân tại B có
BH là đường cao
Suy ra BH là tia phân giác của \(\widehat {ABC}\) (2)
Từ (1) và (2) suy ra ba điểm 3 điểm B, O, H thẳng hàng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có:
Suy ra \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\]
Vậy \[{\rm{cosA + cosB + cosC = 1 + 4}}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\].
Lời giải
Lời giải
a) Xét tam giác ABC vuông tại A có AH ⊥ BC, theo hệ thức lượng trong tam giác vuông ta có:
AB2 = BH . BC
AC2 = CH . BC
Xét tam giác ABH vuông tại H có HE ⊥ AB, theo hệ thức lượng trong tam giác vuông ta có:
BH2 = BE . BA
Hay \(BE = \frac{{B{H^2}}}{{BA}}\)
Xét tam giác ACH vuông tại H có HF ⊥ AC, theo hệ thức lượng trong tam giác vuông ta có:
CH2 = CF . CA
Hay \(CF = \frac{{C{H^2}}}{{CA}}\)
Ta có: \(\frac{{A{B^4}}}{{A{C^4}}} = \left( {\frac{{A{B^2}}}{{A{C^2}}}} \right) = \frac{{{{\left( {BH.BC} \right)}^2}}}{{{{\left( {CH.BC} \right)}^2}}} = \frac{{B{H^2}}}{{C{H^2}}} = \frac{{BE.AB}}{{CF.AC}} = \frac{{BE}}{{CF}}.\frac{{AB}}{{AC}}\)
Suy ra \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\)
Vậy \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).
b) Xét tứ giác AEHF có \(\widehat {{\rm{EAF}}} = \widehat {HE{\rm{A}}} = \widehat {HF{\rm{A}}} = 90^\circ \)
Suy ra AEHF là hình chữ nhật
Do đó AH = EF
Xét tam giác ABC vuông tại A , theo định lý Pytago ta có:
Vậy BC2 = 3AH2 + BE2 + CF2
c) Ta có: \(BE\sqrt {CH} + CF\sqrt {BH} \)
Vậy \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.