Câu hỏi:

05/07/2023 1,059

Cho hàm số y = sin x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = sin x trên đoạn [– π; π] bằng cách tính giá trị của sin x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của sin x với những x âm.

x

– π

\( - \frac{{3\pi }}{4}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{4}\)

0

\(\frac{\pi }{4}\)

\(\frac{\pi }{2}\)

\(\frac{{3\pi }}{4}\)

π

y = sin x

?

?

?

?

?

?

?

?

?

 Bằng cách lấy nhiều điểm M(x; sin x) với x [– π; π] và nối lại ta được đồ thị hàm số y = sin x trên đoạn [– π; π].

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = sin x như hình dưới đây.

Media VietJack

Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = sin x.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Hàm số y = f(x) = sin x có tập xác định là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = sin (– x) = – sin x = – f(x), x D.

Vậy y = sin x là hàm số lẻ.

b) Ta có: sin 0 = 0, \(\sin \frac{\pi }{4} = \frac{{\sqrt 2 }}{2},\sin \frac{\pi }{2} = 1,\,\sin \frac{{3\pi }}{4} = \frac{{\sqrt 2 }}{2}\), sin π = 0.

Vì y = sin x là hàm số lẻ nên \(\sin \left( { - \frac{\pi }{4}} \right) = - \sin \frac{\pi }{4} = - \frac{{\sqrt 2 }}{2}\), \(\sin \left( { - \frac{\pi }{2}} \right) = - \sin \frac{\pi }{2} = - 1\),

\(\,\sin \left( { - \frac{{3\pi }}{4}} \right) = - \sin \frac{{3\pi }}{4} = - \frac{{\sqrt 2 }}{2}\), sin(– π) = – sin π = 0.

Vậy ta hoàn thành được bảng như sau:

x

– π

\( - \frac{{3\pi }}{4}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{4}\)

0

\(\frac{\pi }{4}\)

\(\frac{\pi }{2}\)

\(\frac{{3\pi }}{4}\)

π

y = sin x

0

\( - \frac{{\sqrt 2 }}{2}\)

– 1

\( - \frac{{\sqrt 2 }}{2}\)

0

\(\frac{{\sqrt 2 }}{2}\)

1

\(\frac{{\sqrt 2 }}{2}\)

0

c) Quan sát Hình 1.14, ta thấy đồ thị hàm số y = sin x có:

+) Tập giá trị là [– 1; 1];

+) Đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\,\frac{\pi }{2} + k2\pi } \right)\) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\,\frac{{3\pi }}{2} + k2\pi } \right),\,k \in \mathbb{Z}\) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.

a) Tìm chu kì của sóng.

b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.

Xem đáp án » 13/07/2024 39,885

Câu 2:

Xét tính chẵn lẻ của các hàm số sau:

a) y = sin 2x + tan 2x;

b) y = cos x + sin2 x;

c) y = sin x cos 2x;

d) y = sin x + cos x.

Xem đáp án » 13/07/2024 28,406

Câu 3:

Tìm tập xác định của các hàm số sau:

a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);

b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).

Xem đáp án » 13/07/2024 23,303

Câu 4:

Tìm tập giá trị của các hàm số sau:

a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);

b) y = \(\sqrt {1 + \cos x} - 2\).

Xem đáp án » 13/07/2024 21,642

Câu 5:

Xét tính tuần hoàn của hàm số y = tan2x.

Xem đáp án » 13/07/2024 14,719

Câu 6:

Tìm tập giá trị của hàm số y = 2sin x.

Xem đáp án » 13/07/2024 12,427

Câu 7:

Tìm tập xác định của hàm số \(y = \frac{1}{{\sin x}}.\)

Xem đáp án » 13/07/2024 7,510

Bình luận


Bình luận