Câu hỏi:
12/07/2024 1,085Cho hàm số y = cos x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = cos x trên đoạn [– π; π] bằng cách tính giá trị của cos x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của cos x với những x âm.
x |
– π |
\( - \frac{{3\pi }}{4}\) |
\( - \frac{\pi }{2}\) |
\( - \frac{\pi }{4}\) |
0 |
\(\frac{\pi }{4}\) |
\(\frac{\pi }{2}\) |
\(\frac{{3\pi }}{4}\) |
π |
y = cos x |
? |
? |
? |
? |
? |
? |
? |
? |
? |
Bằng cách lấy nhiều điểm M(x; cos x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = cos x trên đoạn [– π; π].
c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = cos x như hình dưới đây.
Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = cos x.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Hàm số y = f(x) = cos x có tập xác định là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cos (– x) = cos x = f(x), ∀ x ∈ D.
Vậy y = cos x là hàm số chẵn.
b) Ta có: cos 0 = 1, \(\cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2},\cos \frac{\pi }{2} = 0,\,\cos \frac{{3\pi }}{4} = - \frac{{\sqrt 2 }}{2}\), cos π = – 1.
Vì y = cos x là hàm số chẵn nên \(\cos \left( { - \frac{\pi }{4}} \right) = \cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\), \(\cos \left( { - \frac{\pi }{2}} \right) = \cos \frac{\pi }{2} = 0\),
\(\cos \left( { - \frac{{3\pi }}{4}} \right) = \cos \frac{{3\pi }}{4} = - \frac{{\sqrt 2 }}{2}\), cos(– π) = cos π = – 1.
Vậy ta hoàn thành được bảng như sau:
x |
– π |
\( - \frac{{3\pi }}{4}\) |
\( - \frac{\pi }{2}\) |
\( - \frac{\pi }{4}\) |
0 |
\(\frac{\pi }{4}\) |
\(\frac{\pi }{2}\) |
\(\frac{{3\pi }}{4}\) |
π |
y = cos x |
– 1 |
\( - \frac{{\sqrt 2 }}{2}\) |
0 |
\(\frac{{\sqrt 2 }}{2}\) |
1 |
\(\frac{{\sqrt 2 }}{2}\) |
0 |
\( - \frac{{\sqrt 2 }}{2}\) |
– 1 |
c) Quan sát Hình 1.15, ta thấy đồ thị hàm số y = cos x có:
+) Tập giá trị là [– 1; 1];
+) Đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;\,k2\pi } \right)\) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\,\pi + k2\pi } \right),\,k \in \mathbb{Z}\) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Câu 2:
Xét tính chẵn lẻ của các hàm số sau:
a) y = sin 2x + tan 2x;
b) y = cos x + sin2 x;
c) y = sin x cos 2x;
d) y = sin x + cos x.
Câu 3:
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).
Câu 4:
Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Câu 7:
về câu hỏi!