Câu hỏi:
12/07/2024 1,325Cho hàm số y = cos x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = cos x trên đoạn [– π; π] bằng cách tính giá trị của cos x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của cos x với những x âm.
x |
– π |
\( - \frac{{3\pi }}{4}\) |
\( - \frac{\pi }{2}\) |
\( - \frac{\pi }{4}\) |
0 |
\(\frac{\pi }{4}\) |
\(\frac{\pi }{2}\) |
\(\frac{{3\pi }}{4}\) |
π |
y = cos x |
? |
? |
? |
? |
? |
? |
? |
? |
? |
Bằng cách lấy nhiều điểm M(x; cos x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = cos x trên đoạn [– π; π].
c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = cos x như hình dưới đây.
Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = cos x.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a) Hàm số y = f(x) = cos x có tập xác định là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cos (– x) = cos x = f(x), ∀ x ∈ D.
Vậy y = cos x là hàm số chẵn.
b) Ta có: cos 0 = 1, \(\cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2},\cos \frac{\pi }{2} = 0,\,\cos \frac{{3\pi }}{4} = - \frac{{\sqrt 2 }}{2}\), cos π = – 1.
Vì y = cos x là hàm số chẵn nên \(\cos \left( { - \frac{\pi }{4}} \right) = \cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\), \(\cos \left( { - \frac{\pi }{2}} \right) = \cos \frac{\pi }{2} = 0\),
\(\cos \left( { - \frac{{3\pi }}{4}} \right) = \cos \frac{{3\pi }}{4} = - \frac{{\sqrt 2 }}{2}\), cos(– π) = cos π = – 1.
Vậy ta hoàn thành được bảng như sau:
x |
– π |
\( - \frac{{3\pi }}{4}\) |
\( - \frac{\pi }{2}\) |
\( - \frac{\pi }{4}\) |
0 |
\(\frac{\pi }{4}\) |
\(\frac{\pi }{2}\) |
\(\frac{{3\pi }}{4}\) |
π |
y = cos x |
– 1 |
\( - \frac{{\sqrt 2 }}{2}\) |
0 |
\(\frac{{\sqrt 2 }}{2}\) |
1 |
\(\frac{{\sqrt 2 }}{2}\) |
0 |
\( - \frac{{\sqrt 2 }}{2}\) |
– 1 |
c) Quan sát Hình 1.15, ta thấy đồ thị hàm số y = cos x có:
+) Tập giá trị là [– 1; 1];
+) Đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;\,k2\pi } \right)\) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\,\pi + k2\pi } \right),\,k \in \mathbb{Z}\) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số h(t) = \(90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó h(t) là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm t giây.
a) Tìm chu kì của sóng.
b) Tìm chiều cao của sóng, tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng.
Câu 2:
Xét tính chẵn lẻ của các hàm số sau:
a) y = sin 2x + tan 2x;
b) y = cos x + sin2 x;
c) y = sin x cos 2x;
d) y = sin x + cos x.
Câu 3:
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).
Câu 4:
Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Câu 7:
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!