Câu hỏi:
11/07/2024 8,486Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
Giả sử un là độ cao (tính bằng mét) của quả bóng sau lần nảy lên thứ n.
Một quả bóng cao su được thả từ độ cao 5 m xuống mặt sàn, sau lần chạm sàn đầu tiên, quả bỏng nảy lên một độ cao là u1 = \(\frac{2}{3} \cdot 5\).
Tiếp đó, bóng rơi từ độ cao u1 xuống mặt sàn và nảy lên độ cao là \({u_2} = \frac{2}{3}{u_1} = \frac{2}{3} \cdot \left( {\frac{2}{3} \cdot 5} \right) = 5 \cdot {\left( {\frac{2}{3}} \right)^2}\).
Tiếp đó, bóng rơi từ độ cao u2 xuống mặt sàn và nảy lên độ cao là \({u_3} = \frac{2}{3}{u_2} = \frac{2}{3} \cdot \left( {5 \cdot {{\left( {\frac{2}{3}} \right)}^2}} \right) = 5 \cdot {\left( {\frac{2}{3}} \right)^3}\) và cứ tiếp tục như vậy.
Sau lần chạm sàn thứ n, quả bóng nảy lên độ cao là \({u_n} = 5 \cdot {\left( {\frac{2}{3}} \right)^n}\).
Ta có: \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{2}{3}} \right)^n} = 0\), do đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\), suy ra điều phải chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\);
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\).
Câu 3:
Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.
a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Câu 4:
Tìm giới hạn của các dãy số cho bởi:
a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\);
b) \({v_n} = \sqrt {2{n^2} + 1} - n\).
Câu 5:
Cho hai dãy số (un) và (vn) với \({u_n} = 2 + \frac{1}{n},\,\,{v_n} = 3 - \frac{2}{n}\).
Tính và so sánh: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\).
Câu 6:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận