Câu hỏi:

12/07/2024 61,983

Một bệnh nhân hằng ngày phải uống một viên thuốc 150 mg. Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn 5%. Tính lượng thuốc có trong cơ thể sau khi uống viên thuốc của ngày thứ 5. Ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là 150 mg.

Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn 5%.

Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là

150 + 150 . 5% = 150(1 + 0,05).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là

150 + 150(1 + 0,05) . 5% = 150 + 150(0,05 + 0,052) = 150(1 + 0,05 + 0,052)

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là

150 + 150(1 + 0,05 + 0,052) . 5% = 150(1 + 0,05 + 0,052 + 0,053)

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là

150 + 150(1 + 0,05 + 0,052 + 0,053) . 5% = 150(1 + 0,05 + 0,052 + 0,053 + 0,054)

= 157,8946875 (mg).

Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là

S = 150(1 + 0,05 + 0,052 + 0,053 + 0,054 + ...) (mg)

Lại có 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = 1 và công bội q = 0,05.

Do đó, 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... = \(\frac{{{u_1}}}{{1 - q}} = \frac{1}{{1 - 0,05}} = \frac{{20}}{{19}}\).

Suy ra S = \(150 \cdot \frac{{20}}{{19}} = \frac{{400}}{{361}}\) (mg).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\left( {1 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{1}{{{n^2}}}} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 + \frac{1}{n} + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{{{n^2}}}}} = \frac{1}{2}\).

b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{n^2} + 2n} \right) - {n^2}}}{{\sqrt {{n^2} + 2n} + n}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{\sqrt {{n^2}\left( {1 + \frac{2}{n}} \right)} + n}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\sqrt {1 + \frac{2}{n}} + n}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\left( {\sqrt {1 + \frac{2}{n}} + 1} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{2}{{\sqrt {1 + \frac{2}{n}} + 1}} = \frac{2}{{\sqrt 1 + 1}} = 1\).

Lời giải

Lời giải:

a) Ta có: u1 là độ dài cạnh của hình vuông được tô màu tạo từ việc chia hình vuông cạnh 1 thành 4 hình vuông nhỏ bằng nhau, do đó \({u_1} = \frac{1}{2}\).

Cứ tiếp tục như thế, ta được: \({u_2} = \frac{1}{2}{u_1},\,\,{u_3} = \frac{1}{2}{u_2}\),..., \({u_n} = \frac{1}{2}{u_{n - 1}}\), ...

Do vậy, độ dài cạnh của các hình vuông được tô màu lập thành một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\) và công bội \(q = \frac{1}{2}\).

Do đó, tổng của n số hạng đầu là

Sn = u1 + u2 + ... + un = \(\frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}}\)\( = 1 - {\left( {\frac{1}{2}} \right)^n}\).

b) Ta có: S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\)= \(\mathop {\lim }\limits_{n \to + \infty } \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)\) \( = \mathop {\lim }\limits_{n \to + \infty } 1 - \mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{2}} \right)^n} = 1 - 0 = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay