Câu hỏi:
12/07/2024 15,333
Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.

a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.
a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: u1 là độ dài cạnh của hình vuông được tô màu tạo từ việc chia hình vuông cạnh 1 thành 4 hình vuông nhỏ bằng nhau, do đó \({u_1} = \frac{1}{2}\).
Cứ tiếp tục như thế, ta được: \({u_2} = \frac{1}{2}{u_1},\,\,{u_3} = \frac{1}{2}{u_2}\),..., \({u_n} = \frac{1}{2}{u_{n - 1}}\), ...
Do vậy, độ dài cạnh của các hình vuông được tô màu lập thành một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\) và công bội \(q = \frac{1}{2}\).
Do đó, tổng của n số hạng đầu là
Sn = u1 + u2 + ... + un = \(\frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{\frac{1}{2}\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}}\)\( = 1 - {\left( {\frac{1}{2}} \right)^n}\).
b) Ta có: S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\)= \(\mathop {\lim }\limits_{n \to + \infty } \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)\) \( = \mathop {\lim }\limits_{n \to + \infty } 1 - \mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{1}{2}} \right)^n} = 1 - 0 = 1\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là 150 mg.
Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn 5%.
Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là
150 + 150 . 5% = 150(1 + 0,05).
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là
150 + 150(1 + 0,05) . 5% = 150 + 150(0,05 + 0,052) = 150(1 + 0,05 + 0,052)
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là
150 + 150(1 + 0,05 + 0,052) . 5% = 150(1 + 0,05 + 0,052 + 0,053)
Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là
150 + 150(1 + 0,05 + 0,052 + 0,053) . 5% = 150(1 + 0,05 + 0,052 + 0,053 + 0,054)
= 157,8946875 (mg).
Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là
S = 150(1 + 0,05 + 0,052 + 0,053 + 0,054 + ...) (mg)
Lại có 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = 1 và công bội q = 0,05.
Do đó, 1 + 0,05 + 0,052 + 0,053 + 0,054 + ... = \(\frac{{{u_1}}}{{1 - q}} = \frac{1}{{1 - 0,05}} = \frac{{20}}{{19}}\).
Suy ra S = \(150 \cdot \frac{{20}}{{19}} = \frac{{400}}{{361}}\) (mg).
Lời giải
Lời giải:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\left( {1 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \frac{1}{{{n^2}}}} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 + \frac{1}{n} + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{{{n^2}}}}} = \frac{1}{2}\).
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {{n^2} + 2n} \right) - {n^2}}}{{\sqrt {{n^2} + 2n} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{\sqrt {{n^2}\left( {1 + \frac{2}{n}} \right)} + n}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\sqrt {1 + \frac{2}{n}} + n}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{2n}}{{n\left( {\sqrt {1 + \frac{2}{n}} + 1} \right)}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{2}{{\sqrt {1 + \frac{2}{n}} + 1}} = \frac{2}{{\sqrt 1 + 1}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.