Câu hỏi:
11/07/2024 5,392Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài 15. Giới hạn của dãy số có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Lời giải:
Tam giác AA1B vuông tại A1 có AB = h và \(\widehat B = \alpha \).
Do đó, AA1 = AB sinB = h sin α.
Ta có: \(\widehat B + \widehat {BA{A_1}} = 90^\circ \) và \[\widehat {{A_1}A{A_2}} + \widehat {BA{A_1}} = 90^\circ \], suy ra \[\widehat {{A_1}A{A_2}} = \widehat B = \alpha \].
Tam giác AA1A2 vuông tại A2 nên A1A2 = AA1 sin\[\widehat {{A_1}A{A_2}}\] = h sin α . sin α = h sin2 α.
Vì AB ⊥ AC và A1A2 ⊥ AC nên AB // A1A2, suy ra \(\widehat {{A_2}{A_1}{A_3}} = \widehat B = \alpha \) (2 góc đồng vị).
Tam giác A1A2A3 vuông tại A3 nên A2A3 = A1A2 . sin\(\widehat {{A_2}{A_1}{A_3}}\) = h sin2 α . sin α = h sin3 α.
Vì AA1 ⊥ BC và A2A3 ⊥ BC nên AA1 // A2A3, suy ra \(\widehat {{A_3}{A_2}{A_4}} = \widehat {{A_1}A{A_2}} = \alpha \).
Tam giác A2A3A4 vuông tại A4 nên A3A4 = A2A3 . sin\(\widehat {{A_3}{A_2}{A_4}}\) = h sin3 α . sin α = h sin4 α.
Cứ tiếp tục như vậy, ta xác định được An – 1An = h sinn α.
Ta có: AA1A2A3... = AA1 + A1A2 + A2A3 + ... + An – 1An + ...
= h sin α + h sin2 α + h sin3 α + ... + h sinn α + ...
Vì góc B là góc nhọn nên sin B = sin α < 1, do đó |sin α| < 1.
Khi đó, độ dài của đường gấp khúc vô hạn AA1A2A3... là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = h sin α và công bội q = sin α.
Do đó, AA1A2A3... = \(\frac{{{u_1}}}{{1 - q}} = \frac{{h\sin \alpha }}{{1 - \sin \alpha }}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\);
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\).
Câu 3:
Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.
a) Tính tổng Sn = u1 + u2 + ... + un.
b) Tìm S = \(\mathop {\lim }\limits_{n \to + \infty } {S_n}\).
Câu 4:
Tìm giới hạn của các dãy số cho bởi:
a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\);
b) \({v_n} = \sqrt {2{n^2} + 1} - n\).
Câu 5:
Câu 6:
Cho hai dãy số (un) và (vn) với \({u_n} = 2 + \frac{1}{n},\,\,{v_n} = 3 - \frac{2}{n}\).
Tính và so sánh: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right)\) và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} + \mathop {\lim }\limits_{n \to + \infty } {v_n}\).
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận