Câu hỏi:
13/07/2024 11,005Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:
A. 4.
B. 1.
C. 2.
D. 3.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Cách 1. Giải phương trình lượng giác:
Ta có:
\(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4}\)
\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x = \frac{\pi }{2} + k2\pi \,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\]
• Do x ∈ [0; π] nên từ (1) ta có: 0 ≤ k2π ≤ π
Û 0 ≤ 2k ≤ 1
\( \Leftrightarrow 0 \le k \le \frac{1}{2}\)
Mà k ∈ ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x (x = 0) trong trường hợp này.
• Do x ∈ [0; π] nên từ (2) ta có: \[0 \le \frac{\pi }{2} + k2\pi \le \pi \]
\[ \Leftrightarrow 0 \le \frac{1}{2} + 2k \le 1\]
\[ \Leftrightarrow - \frac{1}{2} \le 2k \le \frac{1}{2} \Leftrightarrow - \frac{1}{4} \le k \le \frac{1}{4}\]
Mà k ∈ ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x \(\left( {x = \frac{\pi }{2}} \right)\) trong trường hợp này.
Vậy phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) có hai nghiệm trên đoạn [0; π].
Cách 2. Dùng đồ thị hàm số
Đặt \(x + \frac{\pi }{4} = \alpha \). Khi đó ta có phương trình \(\sin \alpha = \frac{{\sqrt 2 }}{2}\).
Xét đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) và đồ thị hàm số y = sinα trên đoạn [0; π]:
Từ đồ thị hàm số trên ta thấy đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) cắt đồ thị số y = sinα trên đoạn [0; π] tại hai điểm có hoành độ lần lượt là \({\alpha _1} = \frac{\pi }{4}\) và \({\alpha _2} = \frac{{3\pi }}{4}\).
Mà \(x + \frac{\pi }{4} = \alpha \), khi đó ta sẽ tìm được 2 giá trị x là x1 = 0 và \({x_2} = \frac{\pi }{2}\).
Vậy phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) có hai nghiệm trên đoạn [0; π].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 211
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hàm số y = sinx đồng biến trên khoảng:
A. (0; π).
B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).
C. \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Câu 3:
Vẽ đồ thị hàm số y = cosx trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.
Câu 4:
Số nghiệm của phương trình cosx = 0 trên đoạn [0; 10π] là:
D. 11.
Câu 5:
Nếu \(\cos a = \frac{1}{4}\) thì cos2a bằng:
A. \(\frac{7}{8}\).
B. \( - \frac{7}{8}\).
C. \(\frac{{15}}{{16}}\).
D. \( - \frac{{15}}{{16}}\).
Câu 6:
Hàm số nghịch biến trên khoảng (π; 2π) là:
A. y = sinx.
B. y = cosx.
C. y = tanx.
D. y = cotx.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận