Câu hỏi:

13/07/2024 10,137

Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:

A. 4.

B. 1.

C. 2.

D. 3.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cách 1. Giải phương trình lượng giác:

Ta có:

\(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4}\)

\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x = \frac{\pi }{2} + k2\pi \,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\]

• Do x [0; π] nên từ (1) ta có: 0 ≤ k2π ≤ π

                                              Û 0 ≤ 2k ≤ 1

                                              \( \Leftrightarrow 0 \le k \le \frac{1}{2}\)

Mà k ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x (x = 0) trong trường hợp này.

• Do x [0; π] nên từ (2) ta có: \[0 \le \frac{\pi }{2} + k2\pi \le \pi \]

                                               \[ \Leftrightarrow 0 \le \frac{1}{2} + 2k \le 1\]

                                                \[ \Leftrightarrow - \frac{1}{2} \le 2k \le \frac{1}{2} \Leftrightarrow - \frac{1}{4} \le k \le \frac{1}{4}\]

Mà k ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x \(\left( {x = \frac{\pi }{2}} \right)\) trong trường hợp này.

Vậy phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) có hai nghiệm trên đoạn [0; π].

Cách 2. Dùng đồ thị hàm số

Đặt \(x + \frac{\pi }{4} = \alpha \). Khi đó ta có phương trình \(\sin \alpha = \frac{{\sqrt 2 }}{2}\).

Xét đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) và đồ thị hàm số y = sinα trên đoạn [0; π]:

Số nghiệm của phương trình sin (x + pi/4) = căn bậc hai 2 / 2 trên đoạn [0; pi] là (ảnh 1)

Từ đồ thị hàm số trên ta thấy đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) cắt đồ thị số y = sinα trên đoạn [0; π] tại hai điểm có hoành độ lần lượt là \({\alpha _1} = \frac{\pi }{4}\)\({\alpha _2} = \frac{{3\pi }}{4}\).

\(x + \frac{\pi }{4} = \alpha \), khi đó ta sẽ tìm được 2 giá trị x là x1 = 0 và \({x_2} = \frac{\pi }{2}\).

Vậy phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) có hai nghiệm trên đoạn [0; π].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số y = sinx đồng biến trên khoảng:

A. (0; π).

B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).

C. \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

D. (‒π; 0).

Xem đáp án » 13/07/2024 13,598

Câu 2:

Giải các phương trình sau:

sinx + cosx = 0.

Xem đáp án » 13/07/2024 12,057

Câu 3:

Vẽ đồ thị hàm số y = cosx trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.

Xem đáp án » 13/07/2024 10,675

Câu 4:

Nếu \(\cos a = \frac{1}{4}\) thì cos2a bằng:

A. \(\frac{7}{8}\).

B. \( - \frac{7}{8}\).

C. \(\frac{{15}}{{16}}\).

D. \( - \frac{{15}}{{16}}\).

Xem đáp án » 13/07/2024 9,367

Câu 5:

Số nghiệm của phương trình cosx = 0 trên đoạn [0; 10π] là:

A. 5.
B. 9.
C. 10.

D. 11.

 

Xem đáp án » 13/07/2024 8,751

Câu 6:

Hàm số nghịch biến trên khoảng (π; 2π) là:

A. y = sinx.

B. y = cosx.

C. y = tanx.

D. y = cotx.

Xem đáp án » 13/07/2024 8,473

Bình luận


Bình luận
Vietjack official store