Đăng nhập
Đăng ký
1080 lượt thi 23 câu hỏi 50 phút
1172 lượt thi
Thi ngay
725 lượt thi
768 lượt thi
414 lượt thi
453 lượt thi
413 lượt thi
449 lượt thi
327 lượt thi
321 lượt thi
Câu 1:
Hàm số y = sinx đồng biến trên khoảng:
A. (0; π).
B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).
C. \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Câu 2:
Hàm số nghịch biến trên khoảng (π; 2π) là:
A. y = sinx.
B. y = cosx.
C. y = tanx.
D. y = cotx.
Câu 3:
Nếu tan(a + b) = 3, tan(a – b) = ‒3 thì tan2a bằng:
A. 0.
B. \(\frac{3}{5}\).
C. 1.
D. \( - \frac{3}{4}\).
Câu 4:
Nếu \(\cos a = \frac{1}{4}\) thì cos2a bằng:
A. \(\frac{7}{8}\).
B. \( - \frac{7}{8}\).
C. \(\frac{{15}}{{16}}\).
D. \( - \frac{{15}}{{16}}\).
Câu 5:
Nếu \(\cos a = \frac{3}{5}\) và \(\cos b = - \frac{4}{5}\) thì cos(a + b)cos(a – b) bằng:
B. 2.
C. 4.
D. 5.
Câu 6:
Nếu \(\sin a = - \frac{{\sqrt 2 }}{3}\) thì \(\sin \left( {a + \frac{\pi }{4}} \right) + \sin \left( {a - \frac{\pi }{4}} \right)\) bằng:
D. \( - \frac{1}{3}\).
Câu 7:
Số nghiệm của phương trình cosx = 0 trên đoạn [0; 10π] là:
D. 11.
Câu 8:
Số nghiệm của phương trình sinx = 0 trên đoạn [0; 10π] là:
A. 10.
B. 6.
C. 5.
Câu 9:
Nghiệm của phương trình cotx = ‒1 là:
A. \[ - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
B. \(\frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
C. \(\frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
D. \( - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Câu 10:
Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:
A. 4.
B. 1.
C. 2.
D. 3.
Câu 11:
Vẽ đồ thị hàm số y = cosx trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.
Câu 12:
Giải các phương trình sau:
\(\sin \left( {2x - \frac{\pi }{6}} \right) = - \frac{{\sqrt 3 }}{2}\);
Câu 13:
\(\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\);
Câu 14:
sin3x – cos5x = 0;
Câu 15:
\({\cos ^2}x = \frac{1}{4}\);
Câu 16:
\(\sin x - \sqrt 3 \cos x = 0\);
Câu 17:
sinx + cosx = 0.
Câu 18:
Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 ≤ t < 24) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\) (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021). Tìm t để độ sâu của mực nước là:
15 m;
Câu 19:
9 m;
Câu 20:
10,5 m.
Câu 21:
Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở Hình 39.
Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (làm tròn kết quả đến hàng phần mười).
Câu 22:
Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.
Câu 23:
Một sà lan khác cũng chở khối hàng hoá được xếp thành hình hộp chữ nhật với chiều rộng của khối hàng hoá đó là 9 m sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều cao của khối hàng hoá đó phải nhỏ hơn 4,3 m.
216 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com