Câu hỏi:

13/07/2024 2,595

Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 ≤ t < 24) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\) (Nguồn: Đại số và Giải  tích 11 Nâng cao, NXBGD Việt Nam, 2021). Tìm t để độ sâu của mực nước là:

10,5 m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để độ sâu của mực nước là 10,5 m thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 10,5\)

\[ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - \frac{1}{2}\]

\[ \Leftrightarrow \left[ \begin{array}{l}\frac{{\pi t}}{6} + 1 = \frac{{2\pi }}{3} + k2\pi \\\frac{{\pi t}}{6} + 1 = - \frac{{2\pi }}{3} + k2\pi \,\,\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}t = 4 - \frac{6}{\pi } + 12k\,\,\,\,\,\left( 1 \right)\\t = - 4 - \frac{6}{\pi } + 12k\,\,\,\left( 2 \right)\,\,\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

• Do 0 ≤ t < 24 nên từ (1) ta có: \(0 \le 4 - \frac{6}{\pi } + 12k < 24\)

                                            \( \Leftrightarrow - 4 + \frac{6}{\pi } \le 12k < 20 + \frac{6}{\pi }\)

                                           \( \Leftrightarrow - \frac{1}{3} + \frac{1}{{2\pi }} \le k < \frac{5}{3} + \frac{1}{{2\pi }}\)

Mà k ℤ nên k {0; 1}.

Với k = 0 thì \(t = 4 - \frac{6}{\pi } + 12.0 \approx 2,09\) (giờ);

Với k = 1 thì \(t = 4 - \frac{6}{\pi } + 12.1 \approx 14,09\) (giờ).

• Do 0 ≤ t < 24 nên từ (2) ta có: \(0 \le - 4 - \frac{6}{\pi } + 12k < 24\)

                                            \( \Leftrightarrow 4 + \frac{6}{\pi } \le 12k < 28 + \frac{6}{\pi }\)

                                           \( \Leftrightarrow \frac{1}{3} + \frac{1}{{2\pi }} \le k < \frac{7}{3} + \frac{1}{{2\pi }}\)

Mà k ℤ nên k {1; 2}.

Với k = 1 thì \(t = - 4 - \frac{6}{\pi } + 12.1 \approx 6,09\) (giờ);

Với k = 2 thì \(t = - 4 - \frac{6}{\pi } + 12.2 \approx 18,09\) (giờ).

Vậy lúc 2,09 giờ, 6,09 giờ, 14,09 giờ và 18,09 giờ thì mực nước có độ sâu là 10,5 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sinx + cosx = 0

Û cosx = ‒sinx

Û cosx = sin(‒x)

\( \Leftrightarrow \cos x = \cos \left[ {\frac{\pi }{2} - \left( { - x} \right)} \right]\)

\( \Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} + x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + x + k2\pi \\x = - \frac{\pi }{2} - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}0x = \frac{\pi }{2} + k2\pi \,\,\,\left( {v\^o {\rm{ }}l\'i } \right)\\2x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)

\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Vậy phương trình đã cho có các nghiệm là \(x = - \frac{\pi }{4} + k\pi \) với k ℤ.

Lời giải

Đáp án đúng là: C

Cách 1. Dựa vào đồ thị hàm số:

 Đồ thị hàm số y = sinx (hình vẽ):

Hàm số y = sinx đồng biến trên khoảng: A. (0; pi) B. (-3pi/2; -pi/2) C. (-pi/2; pi/2) (ảnh 1)

Quan sát đồ thị trên, ta thấy hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Cách 2. Dùng tính chất của hàm số y = sinx:

Hàm số y = sinx đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ℤ.

Do đó hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay