Câu hỏi:
13/07/2024 2,549Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 ≤ t < 24) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\) (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021). Tìm t để độ sâu của mực nước là:
10,5 m.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Để độ sâu của mực nước là 10,5 m thì:
\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 10,5\)
\[ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - \frac{1}{2}\]
\[ \Leftrightarrow \left[ \begin{array}{l}\frac{{\pi t}}{6} + 1 = \frac{{2\pi }}{3} + k2\pi \\\frac{{\pi t}}{6} + 1 = - \frac{{2\pi }}{3} + k2\pi \,\,\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}t = 4 - \frac{6}{\pi } + 12k\,\,\,\,\,\left( 1 \right)\\t = - 4 - \frac{6}{\pi } + 12k\,\,\,\left( 2 \right)\,\,\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
• Do 0 ≤ t < 24 nên từ (1) ta có: \(0 \le 4 - \frac{6}{\pi } + 12k < 24\)
\( \Leftrightarrow - 4 + \frac{6}{\pi } \le 12k < 20 + \frac{6}{\pi }\)
\( \Leftrightarrow - \frac{1}{3} + \frac{1}{{2\pi }} \le k < \frac{5}{3} + \frac{1}{{2\pi }}\)
Mà k ∈ ℤ nên k ∈ {0; 1}.
Với k = 0 thì \(t = 4 - \frac{6}{\pi } + 12.0 \approx 2,09\) (giờ);
Với k = 1 thì \(t = 4 - \frac{6}{\pi } + 12.1 \approx 14,09\) (giờ).
• Do 0 ≤ t < 24 nên từ (2) ta có: \(0 \le - 4 - \frac{6}{\pi } + 12k < 24\)
\( \Leftrightarrow 4 + \frac{6}{\pi } \le 12k < 28 + \frac{6}{\pi }\)
\( \Leftrightarrow \frac{1}{3} + \frac{1}{{2\pi }} \le k < \frac{7}{3} + \frac{1}{{2\pi }}\)
Mà k ∈ ℤ nên k ∈ {1; 2}.
Với k = 1 thì \(t = - 4 - \frac{6}{\pi } + 12.1 \approx 6,09\) (giờ);
Với k = 2 thì \(t = - 4 - \frac{6}{\pi } + 12.2 \approx 18,09\) (giờ).
Vậy lúc 2,09 giờ, 6,09 giờ, 14,09 giờ và 18,09 giờ thì mực nước có độ sâu là 10,5 m.Đã bán 244
Đã bán 211
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hàm số y = sinx đồng biến trên khoảng:
A. (0; π).
B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).
C. \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Câu 3:
Vẽ đồ thị hàm số y = cosx trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.
Câu 4:
Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:
A. 4.
B. 1.
C. 2.
D. 3.
Câu 5:
Nếu \(\cos a = \frac{1}{4}\) thì cos2a bằng:
A. \(\frac{7}{8}\).
B. \( - \frac{7}{8}\).
C. \(\frac{{15}}{{16}}\).
D. \( - \frac{{15}}{{16}}\).
Câu 6:
Số nghiệm của phương trình cosx = 0 trên đoạn [0; 10π] là:
D. 11.
Câu 7:
Hàm số nghịch biến trên khoảng (π; 2π) là:
A. y = sinx.
B. y = cosx.
C. y = tanx.
D. y = cotx.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận