Câu hỏi:

13/07/2024 2,581

Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 ≤ t < 24) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\) (Nguồn: Đại số và Giải  tích 11 Nâng cao, NXBGD Việt Nam, 2021). Tìm t để độ sâu của mực nước là:

10,5 m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để độ sâu của mực nước là 10,5 m thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 10,5\)

\[ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - \frac{1}{2}\]

\[ \Leftrightarrow \left[ \begin{array}{l}\frac{{\pi t}}{6} + 1 = \frac{{2\pi }}{3} + k2\pi \\\frac{{\pi t}}{6} + 1 = - \frac{{2\pi }}{3} + k2\pi \,\,\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}t = 4 - \frac{6}{\pi } + 12k\,\,\,\,\,\left( 1 \right)\\t = - 4 - \frac{6}{\pi } + 12k\,\,\,\left( 2 \right)\,\,\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

• Do 0 ≤ t < 24 nên từ (1) ta có: \(0 \le 4 - \frac{6}{\pi } + 12k < 24\)

                                            \( \Leftrightarrow - 4 + \frac{6}{\pi } \le 12k < 20 + \frac{6}{\pi }\)

                                           \( \Leftrightarrow - \frac{1}{3} + \frac{1}{{2\pi }} \le k < \frac{5}{3} + \frac{1}{{2\pi }}\)

Mà k ℤ nên k {0; 1}.

Với k = 0 thì \(t = 4 - \frac{6}{\pi } + 12.0 \approx 2,09\) (giờ);

Với k = 1 thì \(t = 4 - \frac{6}{\pi } + 12.1 \approx 14,09\) (giờ).

• Do 0 ≤ t < 24 nên từ (2) ta có: \(0 \le - 4 - \frac{6}{\pi } + 12k < 24\)

                                            \( \Leftrightarrow 4 + \frac{6}{\pi } \le 12k < 28 + \frac{6}{\pi }\)

                                           \( \Leftrightarrow \frac{1}{3} + \frac{1}{{2\pi }} \le k < \frac{7}{3} + \frac{1}{{2\pi }}\)

Mà k ℤ nên k {1; 2}.

Với k = 1 thì \(t = - 4 - \frac{6}{\pi } + 12.1 \approx 6,09\) (giờ);

Với k = 2 thì \(t = - 4 - \frac{6}{\pi } + 12.2 \approx 18,09\) (giờ).

Vậy lúc 2,09 giờ, 6,09 giờ, 14,09 giờ và 18,09 giờ thì mực nước có độ sâu là 10,5 m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải các phương trình sau:

sinx + cosx = 0.

Xem đáp án » 13/07/2024 16,072

Câu 2:

Hàm số y = sinx đồng biến trên khoảng:

A. (0; π).

B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).

C. \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

D. (‒π; 0).

Xem đáp án » 13/07/2024 14,758

Câu 3:

Vẽ đồ thị hàm số y = cosx trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.

Xem đáp án » 13/07/2024 11,224

Câu 4:

Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:

A. 4.

B. 1.

C. 2.

D. 3.

Xem đáp án » 13/07/2024 11,013

Câu 5:

Số nghiệm của phương trình cosx = 0 trên đoạn [0; 10π] là:

A. 5.
B. 9.
C. 10.

D. 11.

 

Xem đáp án » 13/07/2024 9,993

Câu 6:

Nếu \(\cos a = \frac{1}{4}\) thì cos2a bằng:

A. \(\frac{7}{8}\).

B. \( - \frac{7}{8}\).

C. \(\frac{{15}}{{16}}\).

D. \( - \frac{{15}}{{16}}\).

Xem đáp án » 13/07/2024 9,600

Câu 7:

Hàm số nghịch biến trên khoảng (π; 2π) là:

A. y = sinx.

B. y = cosx.

C. y = tanx.

D. y = cotx.

Xem đáp án » 13/07/2024 8,816
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay