Câu hỏi:

19/08/2025 2,664 Lưu

Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 ≤ t < 24) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\) (Nguồn: Đại số và Giải  tích 11 Nâng cao, NXBGD Việt Nam, 2021). Tìm t để độ sâu của mực nước là:

15 m;

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để độ sâu của mực nước là 15 m thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 15\)

\[ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1\]

\[ \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow t = - \frac{6}{\pi }\,\, + 12k\,\left( {k \in \mathbb{Z}} \right)\]

Do 0 ≤ t < 24 nên \(0 \le - \frac{6}{\pi }\,\, + 12k\, < 24\)

                           \( \Leftrightarrow \frac{6}{\pi } \le 12k < 24 + \frac{6}{\pi }\)

                           \( \Leftrightarrow \frac{1}{{2\pi }} \le k < 2 + \frac{1}{{2\pi }}\)

Mà k ℤ nên k {1; 2}.

Với k = 1 thì \(t = - \frac{6}{\pi } + 12.1 \approx 10,09\) (giờ);

Với k = 2 thì \(t = - \frac{6}{\pi } + 12.2 \approx 22,09\) (giờ).

Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cách 1. Dựa vào đồ thị hàm số:

 Đồ thị hàm số y = sinx (hình vẽ):

Hàm số y = sinx đồng biến trên khoảng: A. (0; pi) B. (-3pi/2; -pi/2) C. (-pi/2; pi/2) (ảnh 1)

Quan sát đồ thị trên, ta thấy hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Cách 2. Dùng tính chất của hàm số y = sinx:

Hàm số y = sinx đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ℤ.

Do đó hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Lời giải

sinx + cosx = 0

Û cosx = ‒sinx

Û cosx = sin(‒x)

\( \Leftrightarrow \cos x = \cos \left[ {\frac{\pi }{2} - \left( { - x} \right)} \right]\)

\( \Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} + x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + x + k2\pi \\x = - \frac{\pi }{2} - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}0x = \frac{\pi }{2} + k2\pi \,\,\,\left( {v\^o {\rm{ }}l\'i } \right)\\2x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)

\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Vậy phương trình đã cho có các nghiệm là \(x = - \frac{\pi }{4} + k\pi \) với k ℤ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP