Câu hỏi:
13/07/2024 1,774Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở Hình 39.
Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Hai vị trí O và A là hai vị trí chân cầu, tại hai vị trí này ta có: y = 0
\( \Leftrightarrow 4,8.\sin \frac{x}{9} = 0\)
\( \Leftrightarrow \sin \frac{x}{9} = 0\)
\( \Leftrightarrow \frac{x}{9} = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = 9k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
Quan sát đồ thị ta thấy, đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) cắt trục hoành tại điểm O và A liên tiếp nhau với x ≥ 0.
Xét k = 0, ta có x1 = 0;
Xét k = 1, ta có x2 = 9π.
Mà x1 = 0 nên đây là hoành độ của O, do đó x2 = 9π là hoành độ của điểm A.
Khi đó OA = 9π ≈ 28,3.
Vậy chiều rộng của con sông xấp xỉ 28,3 m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sinx + cosx = 0
Û cosx = ‒sinx
Û cosx = sin(‒x)
\( \Leftrightarrow \cos x = \cos \left[ {\frac{\pi }{2} - \left( { - x} \right)} \right]\)
\( \Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} + x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + x + k2\pi \\x = - \frac{\pi }{2} - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}0x = \frac{\pi }{2} + k2\pi \,\,\,\left( {v\^o {\rm{ }}l\'i } \right)\\2x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)
\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy phương trình đã cho có các nghiệm là \(x = - \frac{\pi }{4} + k\pi \) với k ∈ ℤ.
Lời giải
Đáp án đúng là: C
Cách 1. Dựa vào đồ thị hàm số:
Đồ thị hàm số y = sinx (hình vẽ):
Quan sát đồ thị trên, ta thấy hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Cách 2. Dùng tính chất của hàm số y = sinx:
Hàm số y = sinx đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ∈ ℤ.
Do đó hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án