Câu hỏi:

13/07/2024 2,945

Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở Hình 39.

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so  (ảnh 1)

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so  (ảnh 2)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do sà lan có độ cao 3,6 m so với mực nước sông nên khi sà lan đi qua gầm cầu thì ứng với y = 3,6.

\( \Leftrightarrow 4,8.\sin \frac{x}{9} = 3,6\)

\( \Leftrightarrow \sin \frac{x}{9} = \frac{3}{4}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{x}{9} \approx 0,848 + k2\pi \\\frac{x}{9} \approx \pi - 0,848 + k2\pi \end{array} \right.\)

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp  ta được kết quả gần đúng là 0,848)

\( \Leftrightarrow \left[ \begin{array}{l}x \approx 7,632 + 18k\pi \\x \approx 9\pi - 7,632 + 18k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

Xét k = 0, ta có x1 ≈ 7,632; x2 ≈ 20,642.

Ta biểu diễn các giá trị x vừa tìm được trên hệ trục tọa độ vẽ đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) như sau:

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so  (ảnh 3)

Khi đó để sà lan có thể đi qua được gầm cầu thì khối hàng hóa có độ cao 3,6 m phải có chiều rộng nhỏ hơn độ dài đoạn thẳng BC trên hình vẽ.

Mà BC ≈ 20,642 – 7,632 = 13,01 (m) < 13,1 (m).

Vậy chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sinx + cosx = 0

Û cosx = ‒sinx

Û cosx = sin(‒x)

\( \Leftrightarrow \cos x = \cos \left[ {\frac{\pi }{2} - \left( { - x} \right)} \right]\)

\( \Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} + x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + x + k2\pi \\x = - \frac{\pi }{2} - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}0x = \frac{\pi }{2} + k2\pi \,\,\,\left( {v\^o {\rm{ }}l\'i } \right)\\2x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)

\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Vậy phương trình đã cho có các nghiệm là \(x = - \frac{\pi }{4} + k\pi \) với k ℤ.

Lời giải

Đáp án đúng là: C

Cách 1. Dựa vào đồ thị hàm số:

 Đồ thị hàm số y = sinx (hình vẽ):

Hàm số y = sinx đồng biến trên khoảng: A. (0; pi) B. (-3pi/2; -pi/2) C. (-pi/2; pi/2) (ảnh 1)

Quan sát đồ thị trên, ta thấy hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Cách 2. Dùng tính chất của hàm số y = sinx:

Hàm số y = sinx đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ℤ.

Do đó hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay