Câu hỏi:
13/07/2024 3,044
Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở Hình 39.
Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.
Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở Hình 39.

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.

Quảng cáo
Trả lời:
Do sà lan có độ cao 3,6 m so với mực nước sông nên khi sà lan đi qua gầm cầu thì ứng với y = 3,6.
\( \Leftrightarrow 4,8.\sin \frac{x}{9} = 3,6\)
\( \Leftrightarrow \sin \frac{x}{9} = \frac{3}{4}\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{x}{9} \approx 0,848 + k2\pi \\\frac{x}{9} \approx \pi - 0,848 + k2\pi \end{array} \right.\)
(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp ta được kết quả gần đúng là 0,848)
\( \Leftrightarrow \left[ \begin{array}{l}x \approx 7,632 + 18k\pi \\x \approx 9\pi - 7,632 + 18k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)
Xét k = 0, ta có x1 ≈ 7,632; x2 ≈ 20,642.
Ta biểu diễn các giá trị x vừa tìm được trên hệ trục tọa độ vẽ đồ thị hàm số \(y = 4,8.\sin \frac{x}{9}\) như sau:

Khi đó để sà lan có thể đi qua được gầm cầu thì khối hàng hóa có độ cao 3,6 m phải có chiều rộng nhỏ hơn độ dài đoạn thẳng BC trên hình vẽ.
Mà BC ≈ 20,642 – 7,632 = 13,01 (m) < 13,1 (m).
Vậy chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sinx + cosx = 0
Û cosx = ‒sinx
Û cosx = sin(‒x)
\( \Leftrightarrow \cos x = \cos \left[ {\frac{\pi }{2} - \left( { - x} \right)} \right]\)
\( \Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} + x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + x + k2\pi \\x = - \frac{\pi }{2} - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}0x = \frac{\pi }{2} + k2\pi \,\,\,\left( {v\^o {\rm{ }}l\'i } \right)\\2x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)
\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy phương trình đã cho có các nghiệm là \(x = - \frac{\pi }{4} + k\pi \) với k ∈ ℤ.
Lời giải
Đáp án đúng là: C
Cách 1. Dựa vào đồ thị hàm số:
Đồ thị hàm số y = sinx (hình vẽ):

Quan sát đồ thị trên, ta thấy hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Cách 2. Dùng tính chất của hàm số y = sinx:
Hàm số y = sinx đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ∈ ℤ.
Do đó hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.