Câu hỏi:
13/07/2024 4,364Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 ≤ t < 24) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\) (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021). Tìm t để độ sâu của mực nước là:
9 m;
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Để độ sâu của mực nước là 9 m thì:
\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 9\)
\[ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - 1\]
\[ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow t = 6 - \frac{6}{\pi } + 12k\,\,\,\left( {k \in \mathbb{Z}} \right)\]
Do 0 ≤ t < 24 nên \(0 \le 6 - \frac{6}{\pi } + 12k < 24\)
\( \Leftrightarrow - 6 + \frac{6}{\pi } \le 12k < 18 + \frac{6}{\pi }\)
\( \Leftrightarrow - \frac{1}{2} + \frac{1}{{2\pi }} \le k < \frac{3}{2} + \frac{1}{{2\pi }}\)
Mà k ∈ ℤ nên k ∈ {0; 1}.
Với k = 0 thì \(t = 6 - \frac{6}{\pi } + 12.0 \approx 4,09\) (giờ);
Với k = 1 thì \(t = 6 - \frac{6}{\pi } + 12.1 \approx 16,09\) (giờ).
Vậy lúc 4,09 giờ và 16,09 giờ thì mực nước có độ sâu là 9 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hàm số y = sinx đồng biến trên khoảng:
A. (0; π).
B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).
C. \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Câu 2:
Vẽ đồ thị hàm số y = cosx trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) rồi xác định số nghiệm của phương trình 3cosx + 2 = 0 trên đoạn đó.
Câu 4:
Nếu \(\cos a = \frac{1}{4}\) thì cos2a bằng:
A. \(\frac{7}{8}\).
B. \( - \frac{7}{8}\).
C. \(\frac{{15}}{{16}}\).
D. \( - \frac{{15}}{{16}}\).
Câu 5:
Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:
A. 4.
B. 1.
C. 2.
D. 3.
Câu 6:
Nếu tan(a + b) = 3, tan(a – b) = ‒3 thì tan2a bằng:
A. 0.
B. \(\frac{3}{5}\).
C. 1.
D. \( - \frac{3}{4}\).
Câu 7:
Hàm số nghịch biến trên khoảng (π; 2π) là:
A. y = sinx.
B. y = cosx.
C. y = tanx.
D. y = cotx.
về câu hỏi!