Câu hỏi:

13/07/2024 1,276

Chứng tỏ giá trị của biểu thức sau không phụ thuộc vào giá trị của biến (với \(a\) là một số):

a) \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}}\) (a ≠ 0);

b) \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}}\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có: \(\frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ax - ay} \right)}} = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right).a.\left( {x - y} \right)}} = \frac{1}{a}\).

Vậy giá trị của biểu thức đã cho không phụ thuộc vào biến.

b) Ta có: \(\frac{{{{\left( {x + a} \right)}^2} - {x^2}}}{{2x + a}} = \frac{{\left( {x + a - x} \right)\left( {x + a + x} \right)}}{{2x + a}} = \frac{{a\left( {2x + a} \right)}}{{2x + a}} = a\).

Vậy giá trị của biểu thức đã cho không phụ thuộc vào biến.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\)\(\frac{x}{{20{y^3}z}}\);

b) \(\frac{x}{{2x + 6}}\)\(\frac{4}{{{x^2} - 9}}\);

c) \(\frac{{2x}}{{{x^3} - 1}}\)\(\frac{{x - 1}}{{{x^2} + x + 1}}\);

d) \(\frac{x}{{1 + 2x + {x^2}}}\)\(\frac{3}{{5{x^2} - 5}}\).

Xem đáp án » 13/07/2024 4,564

Câu 2:

Dùng định nghĩa hai phân thức bằng nhau, hãy giải thích vì sao có thể viết:

a) \(\frac{{{x^2}{y^3}}}{{2{x^2}{y^2}}} = \frac{y}{2}\);

b) \(\frac{{{x^2} - x - 2}}{{x + 1}} = \frac{{{x^2} - 3x + 2}}{{x - 1}}\);

c) \(\frac{{{x^2} - 3x + 9}}{{{x^3} + 27}} = \frac{1}{{x + 3}}\).

Xem đáp án » 13/07/2024 3,895

Câu 3:

Tính giá trị của biểu thức:

a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại x = 1 ; y = 2;

b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\);

c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại x = –7;

d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}}\) tại x = 0,5; y = 0,6.

Xem đáp án » 13/07/2024 3,305

Câu 4:

Rút gọn mỗi phân thức sau:

a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\);

b) \(\frac{{x - y}}{{y - x}}\);

c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\);

d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\).

Xem đáp án » 13/07/2024 2,782

Câu 5:

Mỗi cặp phân thức sau có bằng nhau không? Vì sao?

a) \(\frac{x}{{5x + 5}}\)\(\frac{1}{5}\).

b) \(\frac{{ - x}}{{x - 5}}\)\(\frac{{ - x\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^2}}}\).

c) \(\frac{{ - 5}}{{ - x - y}}\)\(\frac{5}{{x + y}}\).

d) \(\frac{{ - x}}{{{{\left( {x - 3} \right)}^2}}}\)\(\frac{x}{{{{\left( {3 - x} \right)}^2}}}\).

Xem đáp án » 13/07/2024 2,396

Câu 6:

Viết điều kiện xác định của mỗi phân thức sau:

a) \(\frac{3}{{2x\left( {5 - x} \right)}}\);

b) \(\frac{{4x}}{{{x^2} - 4}}\);

c) \(\frac{x}{{{y^2} + 2xy}}\);

d) \(\frac{{6,4y}}{{0,4{x^2} + 0,4x}}\).

Xem đáp án » 13/07/2024 2,026

Bình luận


Bình luận