Câu hỏi:

12/07/2024 7,277

Hàm số y = cos x nghịch biến trên khoảng:

A. (0; π).

B. (π; 2π).

C. \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\).

D. (– π; 0).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Hàm số y = cos x nghịch biến trên mỗi khoảng (k2π; π + k2π).

Do đó hàm số y = cos x nghịch biến trên khoảng (0; π).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là:

A. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).

B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).

C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

D. \(\mathbb{R}\backslash \left\{ {2\pi |k \in \mathbb{Z}} \right\}\).

Xem đáp án » 12/07/2024 18,753

Câu 2:

Hàm số nào sau đây là hàm số lẻ?

A. y = – 2cos x.

B. y = – 2sin x.

C. y = tan x – cos x.

D. y = – 2 sin x + 2.  

Xem đáp án » 12/07/2024 8,479

Câu 3:

Tập xác định của hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) là:

A. \(\mathbb{R}\backslash \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).

B. \(\mathbb{R}\backslash \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\).

C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\).

D. \(\mathbb{R}\backslash \left\{ { - \frac{\pi }{4} + k2\pi |k \in \mathbb{Z}} \right\}\).

Xem đáp án » 12/07/2024 6,352

Câu 4:

Tìm tập xác định của các hàm số:

\(y = \sqrt {\cos x - 1} \).

Xem đáp án » 12/07/2024 4,838

Câu 5:

Hàm số nào sau đây là hàm số chẵn?

A. y = cos x + 5.

B. y = tan x + cot x.

C. y = sin(– x).

D. y = sin x – cos x.

Xem đáp án » 12/07/2024 4,728

Câu 6:

Tìm tập xác định của các hàm số:

\(y = \sqrt {1 + \sin 3x} \);

Xem đáp án » 12/07/2024 4,022

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store