Câu hỏi:
12/07/2024 3,338Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm nào của t thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao là 86 m?
Quảng cáo
Trả lời:
+ Khi quay một vòng, cabin ở vị trí cao nhất khi h(t) đạt giá trị lớn nhất.
Ta có \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
Với mọi t ≥ 0 thì \( - 1 \le \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) \le 1\), do đó h(t) đạt giá trị lớn nhất khi \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = 1\) hay t = 7,5 (phút).
Vậy khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm t = 7,5 phút thì cabin ở vị trí cao nhất.
+ Ta có cabin đạt được chiều cao là 86 m khi h(t) = 86 hay \(57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86\), tức là \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2}\) hay t = 5 (phút).
Vậy cabin đạt được chiều cao là 86 m lần đầu tiên khi t = 5 (phút).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 211
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là:
A. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).
B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
D. \(\mathbb{R}\backslash \left\{ {2\pi |k \in \mathbb{Z}} \right\}\).
Câu 2:
Hàm số nào sau đây là hàm số lẻ?
A. y = – 2cos x.
B. y = – 2sin x.
C. y = tan x – cos x.
D. y = – 2 sin x + 2.
Câu 3:
Hàm số y = cos x nghịch biến trên khoảng:
A. (0; π).
B. (π; 2π).
C. \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\).
D. (– π; 0).
Câu 4:
Tập xác định của hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) là:
A. \(\mathbb{R}\backslash \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
B. \(\mathbb{R}\backslash \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\).
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\).
D. \(\mathbb{R}\backslash \left\{ { - \frac{\pi }{4} + k2\pi |k \in \mathbb{Z}} \right\}\).
Câu 5:
Hàm số nào sau đây là hàm số chẵn?
A. y = cos x + 5.
B. y = tan x + cot x.
C. y = sin(– x).
D. y = sin x – cos x.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận