Giải SBT Toán 11 Cánh Diều Hàm số lượng giác và đồ thị có đáp án
27 người thi tuần này 4.6 567 lượt thi 35 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Biểu thức \(\sqrt {1 + \cos 2x} \) có nghĩa khi 1 + cos 2x ≥ 0.
Mà cos 2x ∈ [– 1; 1] nên 1 + cos 2x ≥ 0 với mọi x ∈ ℝ.
Do đó, hàm số \(y = \sqrt {1 + \cos 2x} \) xác định với mọi x ∈ ℝ.
Vậy tập xác định của hàm số mọi x ∈ ℝ là D = ℝ.
Lời giải
Đáp án đúng là: C
Biểu thức \(\sqrt {\frac{{1 - \cos x}}{{1 + \sin x}}} \) có nghĩa khi \(\left\{ \begin{array}{l}\frac{{1 - \cos x}}{{1 + \sin x}} \ge 0\\1 + \sin x \ne 0\end{array} \right.\).
Do cos x ∈ [– 1; 1] nên 1 – cos x ≥ 0 với mọi x ∈ ℝ.
Và sin x ∈ [– 1; 1] nên 1 + sin x ≥ 0 với mọi x ∈ ℝ.
Do đó để \(\left\{ \begin{array}{l}\frac{{1 - \cos x}}{{1 + \sin x}} \ge 0\\1 + \sin x \ne 0\end{array} \right.\) thì 1 + sin x ≠ 0 hay sin x ≠ – 1, khi đó \(x \ne - \frac{\pi }{2} + k2\pi ,\,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số \(y = \sqrt {\frac{{1 - \cos x}}{{1 + \sin x}}} \) là D = \(\mathbb{R}\backslash \left\{ { - \frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\).Lời giải
Đáp án đúng là: C
Biểu thức \(\frac{{1 - \sin x}}{{\cos x}}\) có nghĩa khi cos x ≠ 0 hay \(x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là D = \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
Lời giải
Đáp án đúng là: A
Hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) xác định khi tan x và cot x xác định (do 1 + cot2 x > 0 với mọi x khi cot x xác định).
Mà tan x xác định khi \(x \ne \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\), cot x xác định khi x ≠ kπ, k ∈ ℤ.
Do đó hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) xác định khi \(x \ne k\frac{\pi }{2},\,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số \(y = \tan x + \frac{1}{{1 + {{\cot }^2}x}}\) là D = \(\mathbb{R}\backslash \left\{ {k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}\).
Lời giải
Đáp án đúng là: B
Xét hàm số y = – 2sin x, ta có:
+ Tập xác định: D = ℝ.
+ Với x ∈ ℝ thì – x ∈ ℝ và f(– x) = – 2sin(– x) = – 2 . (– sin x) = 2 sin x = – f(x).
Do đó, hàm số y = – 2sin x là hàm số lẻ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
113 Đánh giá
50%
40%
0%
0%
0%