Câu hỏi:

19/08/2025 526 Lưu

Từ đồ thị hàm số y = sin x, tìm:

Các giá trị của x để sin x = \(\frac{1}{2}\);

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét đồ thị hàm số y = sin x và đường thẳng y = \(\frac{1}{2}\).

Từ đồ thị hàm số y = sin x, tìm:  a) Các giá trị của x để sin x = 1/2 (ảnh 1)

Giá trị của x để sin x = \(\frac{1}{2}\) là hoành độ giao điểm của đồ thị hàm số y = sin x và đường thẳng y = \(\frac{1}{2}\).

Dựa vào đồ thị, ta có sin x = \(\frac{1}{2}\) khi \(x = \frac{\pi }{6} + k2\pi \)\(x = \frac{{5\pi }}{6} + k2\pi \) với k ℤ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Biểu thức \(\frac{{1 - \sin x}}{{\cos x}}\) có nghĩa khi cos x ≠ 0 hay \(x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\).

Vậy tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là D = \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

Lời giải

Đáp án đúng là: A

Hàm số y = cos x nghịch biến trên mỗi khoảng (k2π; π + k2π).

Do đó hàm số y = cos x nghịch biến trên khoảng (0; π).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP