Câu hỏi:

12/07/2024 423

Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

 Tính chu kì của hàm số h(t)?

Một vòng quay trò chơi có bán kính 57 m Tính chu kì của hàm số h(t) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì vòng quay trò chơi quay mỗi vòng hết 15 phút nên chu kì của hàm số h(t) bằng 15 phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Biểu thức \(\frac{{1 - \sin x}}{{\cos x}}\) có nghĩa khi cos x ≠ 0 hay \(x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\).

Vậy tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là D = \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

Lời giải

Đáp án đúng là: B

Xét hàm số y = – 2sin x, ta có:

+ Tập xác định: D = ℝ.

+ Với x ℝ thì – x ℝ và f(– x) = – 2sin(– x) = – 2 . (– sin x) = 2 sin x = – f(x).

Do đó, hàm số y = – 2sin x là hàm số lẻ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP