Câu hỏi:
13/07/2024 1,806Quảng cáo
Trả lời:
Vì lim(3n + 4) \( = \lim \left[ {n\left( {3 + \frac{4}{n}} \right)} \right]\) = lim (n . 3) = +∞
và \(\lim \left( { - 5 + \frac{2}{n}} \right) = \lim \left( { - 5} \right) + \lim \frac{2}{n} = - 5\) < 0.
Do đó, \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}} = - \infty \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\)\( = \lim \frac{{{n^3}\left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}}\)\( = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}}\)
\( = \frac{{\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}} = + \infty \) (do \(\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right) = 1\) và \(\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right) = 0\)).
Lời giải
Đáp án đúng là: B
Vì limqn = 0 với |q| < 1 nên ta có:
\(\lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\) do \(\left| {\frac{1}{2}} \right| < 1\);
\(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\) do \(\left| {\frac{1}{{\sqrt 2 }}} \right| < 1\);
\(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\) do \(\left| { - \frac{{\sqrt 3 }}{2}} \right| < 1\).
Vậy các đáp án A, C, D đúng.
Vì \(\left| {\frac{3}{2}} \right| > 1\) nên \(\lim {\left( {\frac{3}{2}} \right)^n} \ne 0\), do đó đáp án B sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.