Câu hỏi:

18/07/2023 1,739

Giả sử \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\)\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) (L, M ℝ). Phát biểu nào sau đây là sai?

A. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\).

B. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\).

C. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\).

D. \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Với \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\)\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) (L, M ℝ) thì \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (nếu M ≠ 0).

Do vậy đáp án D sai vì thiếu điều kiện M ≠ 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị hàm số, ta có:

\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\);

\(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1\);

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = - \infty \);

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) = + \infty \).

Lời giải

Ta có g(10) = 45 . 102 – 103.

Khi đó \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\)\[ = \mathop {\lim }\limits_{t \to 10} \frac{{45{t^2} - {t^3} - {{45.10}^2} - {{10}^3}}}{{t - 10}}\]

\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {45{t^2} - {{45.10}^2}} \right) - \left( {{t^3} - {{10}^3}} \right)}}{{t - 10}}\]

\( = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {t - 10} \right)\left( {t + 10} \right) - \left( {t - 10} \right)\left( {{t^2} + 10t + 100} \right)}}{{t - 10}}\)

\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {t - 10} \right)\left[ {45\left( {t + 10} \right) - \left( {{t^2} + 10t + 100} \right)} \right]}}{{t - 10}}\]

\[ = \mathop {\lim }\limits_{t \to 10} \left( { - {t^2} + 35t + 350} \right) = 600\].

Vậy \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) = 600.

Từ kết quả trên, ta thấy tốc độ tăng người bệnh ngay tại thời điểm t = 10 ngày là 600 người/ngày.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP