Câu hỏi:
18/07/2023 208Tính các giới hạn sau:
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 3 + \frac{4}{x}}}{{2{x^2} + 3}}\);
Câu hỏi trong đề: Giải SBT Toán 11 Cánh Diều Giới hạn của hàm số có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Vì \(\mathop {\lim }\limits_{x \to - \infty } \left( { - 3 + \frac{4}{x}} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - 3} \right) + \mathop {\lim }\limits_{x \to - \infty } \frac{4}{x} = - 3 + 0 = - 3\)
và \(\mathop {\lim }\limits_{x \to - \infty } \left( {2{x^2} + 3} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^2}\left( {2 + \frac{3}{{{x^2}}}} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } {x^2}.\mathop {\lim }\limits_{x \to - \infty } \left( {2 + \frac{3}{{{x^2}}}} \right) = + \infty \).
Do đó, \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 3 + \frac{4}{x}}}{{2{x^2} + 3}} = 0\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Quan sát đồ thị hàm số ở Hình 2 và cho biết các giới hạn sau: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right);\,\mathop {\lim }\limits_{x \to - \infty } f\left( x \right);\,\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right);\,\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).
Câu 2:
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t2 – t3 (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t1, t2 là \({V_{tb}} = \frac{{g\left( {{t_2}} \right) - g\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\). Tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và cho biết ý nghĩa của kết quả tìm được.
Câu 3:
Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
B. Nếu với dãy số (xn) bất kì, xn < a và xn → +∞, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
C. Nếu với dãy số (xn) bất kì, xn > a, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
D. Nếu với dãy số (xn) bất kì, xn > a và xn → L, ta có f(xn) →+∞ thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\).
Câu 4:
Với c, k là các hằng số và k nguyên dương thì
A. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = 0\).
B. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \).
C. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = - \infty \).
D. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = - \infty \).
Câu 5:
Cho hàm số y = f(x) xác định trên khoảng (x0; b). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
B. Nếu với dãy số (xn) bất kì, xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
C. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → L, ta có f(xn) → x0 thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
D. Nếu với dãy số (xn) bất kì, xn < x0 và xn → x0, ta có f(xn) → L thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = L\).
Câu 6:
Cho \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = 2\). Tính:
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\);
Câu 7:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận