Cho số thực a và hàm số (x) thoả mãn \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty \). Chứng minh rằng:
\(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}} = \frac{1}{2}\).
Cho số thực a và hàm số (x) thoả mãn \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty \). Chứng minh rằng:
\(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}} = \frac{1}{2}\).
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}}\)\( = \mathop {\lim }\limits_{x \to a} \frac{{1 - \frac{3}{{f\left( x \right)}}}}{{2 + \frac{1}{{f\left( x \right)}}}} = \frac{{\mathop {\lim }\limits_{x \to a} \left( {1 - \frac{3}{{f\left( x \right)}}} \right)}}{{\mathop {\lim }\limits_{x \to a} \left( {2 + \frac{1}{{f\left( x \right)}}} \right)}}\)
\( = \frac{{\mathop {\lim }\limits_{x \to a} 1 - \mathop {\lim }\limits_{x \to a} \frac{3}{{f\left( x \right)}}}}{{\mathop {\lim }\limits_{x \to a} 2 + \mathop {\lim }\limits_{x \to a} \frac{1}{{f\left( x \right)}}}} = \frac{{\mathop {\lim }\limits_{x \to a} 1 - \frac{{\mathop {\lim }\limits_{x \to a} 3}}{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}}}{{\mathop {\lim }\limits_{x \to a} 2 + \frac{{\mathop {\lim }\limits_{x \to a} 1}}{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}}}\)\( = \frac{{1 - 0}}{{2 + 0}} = \frac{1}{2}\).
Vậy \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}} = \frac{1}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có g(10) = 45 . 102 – 103.
Khi đó \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\)\[ = \mathop {\lim }\limits_{t \to 10} \frac{{45{t^2} - {t^3} - {{45.10}^2} - {{10}^3}}}{{t - 10}}\]
\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {45{t^2} - {{45.10}^2}} \right) - \left( {{t^3} - {{10}^3}} \right)}}{{t - 10}}\]
\( = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {t - 10} \right)\left( {t + 10} \right) - \left( {t - 10} \right)\left( {{t^2} + 10t + 100} \right)}}{{t - 10}}\)
\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {t - 10} \right)\left[ {45\left( {t + 10} \right) - \left( {{t^2} + 10t + 100} \right)} \right]}}{{t - 10}}\]
\[ = \mathop {\lim }\limits_{t \to 10} \left( { - {t^2} + 35t + 350} \right) = 600\].
Vậy \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) = 600.
Từ kết quả trên, ta thấy tốc độ tăng người bệnh ngay tại thời điểm t = 10 ngày là 600 người/ngày.
Lời giải
Dựa vào đồ thị hàm số, ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\);
\(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1\);
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = - \infty \);
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) = + \infty \).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.