Câu hỏi:

13/07/2024 1,559 Lưu

Cho số thực a và hàm số (x) thoả mãn \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty \). Chứng minh rằng:

\(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}} = \frac{1}{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}}\)\( = \mathop {\lim }\limits_{x \to a} \frac{{1 - \frac{3}{{f\left( x \right)}}}}{{2 + \frac{1}{{f\left( x \right)}}}} = \frac{{\mathop {\lim }\limits_{x \to a} \left( {1 - \frac{3}{{f\left( x \right)}}} \right)}}{{\mathop {\lim }\limits_{x \to a} \left( {2 + \frac{1}{{f\left( x \right)}}} \right)}}\)

          \( = \frac{{\mathop {\lim }\limits_{x \to a} 1 - \mathop {\lim }\limits_{x \to a} \frac{3}{{f\left( x \right)}}}}{{\mathop {\lim }\limits_{x \to a} 2 + \mathop {\lim }\limits_{x \to a} \frac{1}{{f\left( x \right)}}}} = \frac{{\mathop {\lim }\limits_{x \to a} 1 - \frac{{\mathop {\lim }\limits_{x \to a} 3}}{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}}}{{\mathop {\lim }\limits_{x \to a} 2 + \frac{{\mathop {\lim }\limits_{x \to a} 1}}{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}}}\)\( = \frac{{1 - 0}}{{2 + 0}} = \frac{1}{2}\).

Vậy \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - 3}}{{2f\left( x \right) + 1}} = \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có g(10) = 45 . 102 – 103.

Khi đó \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\)\[ = \mathop {\lim }\limits_{t \to 10} \frac{{45{t^2} - {t^3} - {{45.10}^2} - {{10}^3}}}{{t - 10}}\]

\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {45{t^2} - {{45.10}^2}} \right) - \left( {{t^3} - {{10}^3}} \right)}}{{t - 10}}\]

\( = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {t - 10} \right)\left( {t + 10} \right) - \left( {t - 10} \right)\left( {{t^2} + 10t + 100} \right)}}{{t - 10}}\)

\[ = \mathop {\lim }\limits_{t \to 10} \frac{{\left( {t - 10} \right)\left[ {45\left( {t + 10} \right) - \left( {{t^2} + 10t + 100} \right)} \right]}}{{t - 10}}\]

\[ = \mathop {\lim }\limits_{t \to 10} \left( { - {t^2} + 35t + 350} \right) = 600\].

Vậy \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) = 600.

Từ kết quả trên, ta thấy tốc độ tăng người bệnh ngay tại thời điểm t = 10 ngày là 600 người/ngày.

Lời giải

Dựa vào đồ thị hàm số, ta có:

\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\);

\(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1\);

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = - \infty \);

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) = + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP