Câu hỏi:
18/07/2023 234Xét tính liên tục của các hàm số sau:
\(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì hàm số \(y = \frac{{2x + 5}}{{x + 2}}\) liên tục trên hai khoảng (–∞; – 2) và (− 2; +∞), hàm số \(y = \frac{{3x - 1}}{{2x - 4}}\) liên tục trên hai khoảng (−∞; 2) và (2; +∞) nên hàm số \(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\) liên tục trên các khoảng (–∞; – 2), (–2; 2), (2; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x\,\,\,\,n\^e 'u\,\,x \ge 1\\x + a\,\,\,\,\,\,\,n\^e 'u\,\,x < 1\end{array} \right.\).
Tìm a để hàm số liên tục trên ℝ.
Câu 2:
Phát biểu nào sau đây là đúng?
A. Hàm số y = f(x) liên tục tại x = a khi và chỉ khi \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)\).
B. Hàm số y = f(x) liên tục tại x = a khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\).
C. Hàm số y = f(x) liên tục tại x = a khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\).
D. Hàm số y = f(x) liên tục tại x = a khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right)\).
Câu 3:
Cho đồ thị hàm số y = f(x) trong Hình 7. Phát biểu nào sau đây là sai?
A. Hàm số y = f(x) không liên tục tại x = 1.
B. Hàm số y = f(x) không liên tục tại x = 3.
C. Hàm số y = f(x) không liên tục tại x = 5.
D. Hàm số y = f(x) không liên tục tại x = 0.
Câu 4:
Quan sát đồ thị hàm số trong Hình 8 và cho biết hàm số đó có liên tục:
Tại x = \(\frac{5}{3}\) hay không.Câu 5:
Theo quyết định số 2019/QĐ-BĐVN ngày 01/11/2018 của Tổng công ty Bưu điện Việt Nam, giá cước dịch vụ Bưu chính phổ cập đối với dịch vụ thư cơ bản và bưu thiếp trong nước có khối lượng đến 250 g như trong bảng sau:
Khối lượng đến 250 g |
Mức cước (đồng) |
Đến 20 g |
4 000 |
Trên 20 g đến 100 g |
6 000 |
Trên 100 g đến 250 g |
8 000 |
Hãy biểu diễn số tiền phải trả khi sử dụng dịch vụ thư cơ bản và bưu thiếp theo khối lượng của thư cơ bản và bưu thiếp.
Câu 6:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x\,\,\,\,n\^e 'u\,\,x \ge 1\\x + a\,\,\,\,\,\,\,n\^e 'u\,\,x < 1\end{array} \right.\).
Với a = 2, xét tính liên tục của hàm số tại x = 1.
Câu 7:
Theo quyết định số 2019/QĐ-BĐVN ngày 01/11/2018 của Tổng công ty Bưu điện Việt Nam, giá cước dịch vụ Bưu chính phổ cập đối với dịch vụ thư cơ bản và bưu thiếp trong nước có khối lượng đến 250 g như trong bảng sau:
Khối lượng đến 250 g |
Mức cước (đồng) |
Đến 20 g |
4 000 |
Trên 20 g đến 100 g |
6 000 |
Trên 100 g đến 250 g |
8 000 |
Hàm số trên có liên tục trên tập xác định hay không?
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
75 câu trắc nghiệm Giới hạn cơ bản (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
về câu hỏi!