Câu hỏi:
18/07/2023 281
Nếu \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = + \infty \) thì \(\mathop {\lim }\limits_{x \to a} \left[ { - f\left( x \right)} \right]\) bằng:
A. +∞.
B. –∞.
C. a.
D. – a.
Nếu \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = + \infty \) thì \(\mathop {\lim }\limits_{x \to a} \left[ { - f\left( x \right)} \right]\) bằng:
A. +∞.
B. –∞.
C. a.
D. – a.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(\mathop {\lim }\limits_{x \to a} \left[ { - f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} \left[ {\left( { - 1} \right).f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} \left( { - 1} \right).\mathop {\lim }\limits_{x \to a} f\left( x \right)\).
Mà \(\mathop {\lim }\limits_{x \to a} \left( { - 1} \right) = - 1 < 0\) và \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = + \infty \).
Do vậy, \(\mathop {\lim }\limits_{x \to a} \left( { - 1} \right).\mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty \). Vậy \(\mathop {\lim }\limits_{x \to a} \left[ { - f\left( x \right)} \right] = - \infty \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Với x ≠ 2 thì \(f\left( x \right) = \frac{{{x^2} - 4}}{{x - 2}}\) liên tục trên hai khoảng (–∞; 2) và (2; +∞).
Ta có: f(2) = a; \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\].
Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 2.
Khi đó \[f\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} f\left( x \right)\] hay a = 4.
Vậy hàm số liên tục trên ℝ khi a = 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.