Câu hỏi:

12/07/2024 1,376

Tính các giới hạn sau:

\(\lim \frac{{ - 4{n^2} - 3}}{{2{n^2} - n + 5}}\);

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\lim \frac{{ - 4{n^2} - 3}}{{2{n^2} - n + 5}}\)\( = \lim \frac{{{n^2}\left( { - 4 - \frac{3}{{{n^2}}}} \right)}}{{{n^2}\left( {2 - \frac{1}{n} + \frac{5}{{{n^2}}}} \right)}}\)\( = \lim \frac{{ - 4 - \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n} + \frac{5}{{{n^2}}}}}\)

\( = \frac{{\lim \left( { - 4 - \frac{3}{{{n^2}}}} \right)}}{{\lim \left( {2 - \frac{1}{n} + \frac{5}{{{n^2}}}} \right)}}\)\( = \frac{{ - 4}}{2} = - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 5x + 6}}{{x - 2}}\)\[ = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 3} \right) = - 1\].                  

Lời giải

Với x ≠ 2 thì \(f\left( x \right) = \frac{{{x^2} - 4}}{{x - 2}}\) liên tục trên hai khoảng (–∞; 2) và (2; +∞).

Ta có: f(2) = a; \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\].

Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 2.

Khi đó \[f\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} f\left( x \right)\] hay a = 4.

Vậy hàm số liên tục trên ℝ khi a = 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP