Câu hỏi:

13/07/2024 2,472

Tìm các giới hạn sau:

b)  lim4n2+3n.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có:  4n2+3n=4+3n2

 lim4n2+3n=lim4+3n2=lim4+3n2=lim4+lim3n2=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dài), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

a) Kí hiệu an là diện tích của hình vuông thứ n và Sn là tổng diện tích của n hình vuông đầu tiên. Viết công thức tính an, Sn (n = 1, 2, 3, ...) và tìm limSn (giới hạn này nếu có được gọi là tổng diện tích của các hình vuông).

Xem đáp án » 13/07/2024 15,040

Câu 2:

Tìm các giới hạn sau:

a)  lim2n+1n;

d)  limn22n+32n2.

Xem đáp án » 13/07/2024 10,204

Câu 3:

Tìm các giới hạn sau:

a)  lim2n+1n;

b)  lim16n22n;

Xem đáp án » 13/07/2024 5,805

Câu 4:

Tìm các giới hạn sau:

b)  lim34n.

Xem đáp án » 13/07/2024 4,379

Câu 5:

Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau:

a) Bắt đầu một hình vuông H­0 cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông H0 thành chín hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình H1 (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của H1 thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình H2 (xem Hình 6c). Tiếp tục quá trình này ta nhận được một dãy hình Hn(n = 1, 2, 3, ...).

Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau: a) Bắt đầu một hình vuông H¬0 cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông H0 thành chín hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình H1 (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của H1 thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình H2 (xem Hình 6c). Tiếp tục quá trình này ta nhận được một dãy hình Hn(n = 1, 2, 3, ...). (ảnh 1)

Ta có: H1 có 5 hình vuông, mỗi hình vuông có cạnh bằng  13;

H2 có 5.5 = 52 hình vuông, mỗi hình vuông có cạnh bằng  13.13=132;...

Từ đó, nhận được Hn có 5n hình vuông, mỗi hình vuông có cạnh bằng  13n.

a) Tính diện tích Sn của Hn và tính lim Sn.

Xem đáp án » 13/07/2024 3,369

Câu 6:

Viết số thập phân vô hạn tuần hoàn 0,444 ... dưới dạng phân số.

Xem đáp án » 13/07/2024 2,712

Câu 7:

Tính tổng của các cấp số nhân lùi vô hạn sau:

a)  12+1418+...+12n+...;

Xem đáp án » 13/07/2024 2,627

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store