Câu hỏi:

13/07/2024 1,334

Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật. (ảnh 1)

(H.3.35). Trung điểm các cạnh AB, BC, CD, DA của hình thoi ABCD lần lượt là M, N, P, Q. Tương tự bài 3, ta chứng minh được MNPQ là hình bình hành.

Tứ giác ABCD là hình thoi nên AC BD. (1)

Ta có MN // AC, MQ // BD. (2)

Từ (1) và (2) suy ra MN MQ MNPQ là hình bình hành có một góc vuông nên là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC, D là một điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB, AC, chúng cắt các cạnh AC, AB lần lượt tại E, F. a) Tứ giác AEDF là hình gì? Vì sao? b) Nếu tam giác ABC cân tại A thì điểm D ở vị trí nào trên cạnh BC để tứ giác AEDF là hình thoi? c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì? d) Nếu tam giác ABC vuông cân tại A thì điểm D ở vị trí nào trên cạnh BC để AEDF là hình vuông? (ảnh 1)

(H.3.33). a) Tứ giác AEDF có AE // DF, ED // AF nên AEDF là hình bình hành.

b) Để AEDF là hình thoi cần phải có AD là đường phân giác của góc A. Tam giác ABC cân tại A nên có đường phân giác AD cũng là đường trung tuyến, do đó D là trung điểm của BC.

Ngược lại, nếu D là trung điểm của cạnh BC thì AD cũng là đường phân giác của góc A (do tam giác ABC cân tại A). Khi đó hình bình hành AEDF có AD là đường phân giác của góc A nên nó là hình thoi.

c) Nếu tam giác ABC vuông tại A thì hình bình hành AEDF có một góc vuông nên AEDF là hình chữ nhật.

d) Nếu tam giác ABC vuông cân tại A thì AEDF là hình chữ nhật.

Để AEDF là một hình vuông thì nó còn là một hình thoi nên theo câu b, D phải là trung điểm của BC.

Lời giải

Hai tam giác vuông AMB và DMC có AB = DC, BM = MC nên ∆AMB = ∆DMC (c.g.c) ⇒ AMB^=DMC^.

Do góc AMD^=90°AMB^=DMC^=180°90°:2=45°.

Do đó ∆AMB vuông cân tại B, ∆DMC vuông cân tại C.

Suy ra AB = BM = MC = CD.

Ta có AD = BC = 2AB, suy ra chu vi của ABCD bằng

AB + BC + CD + DA = 36

Do đó AB = CD = 36 : 6 = 6 cm, AD = CB = 12 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP