Câu hỏi:

13/07/2024 473

Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông. (ảnh 1)

(H.3.37). Vì MK = MH, NB = NH ⇒ MN là đường trung bình trong tam giác HKB.

⇒ MN // KB và MN = 12KB (1)

Chứng minh tương tự, ta có:

PQ // KB và PQ = 12KB (2)

NP // CH và NP = 12CH (3)

Từ (1) và (2), ta có MN // PQ và MN = PQ ⇒ MNPQ là hình bình hành (4)

Ta có BK = CH (giả thiết). (5)

Từ (1), (3) và (5), ta có MN = NP ⇒ MNPQ là hình thoi (6)

Vì ∆ABC vuông tại A (giả thiết) ⇒ BK ⊥ CH, mà NP // CH, MN // KB (chứng minh trên).

⇒ MN ⊥ NP (7).

Từ (6) và (7), ta có MNPQ là hình thoi có một góc vuông nên nó là hình chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, D là một điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB, AC, chúng cắt các cạnh AC, AB lần lượt tại E, F.

a) Tứ giác AEDF là hình gì? Vì sao?

b) Nếu tam giác ABC cân tại A thì điểm D ở vị trí nào trên cạnh BC để tứ giác AEDF là hình thoi?

c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì?

d) Nếu tam giác ABC vuông cân tại A thì điểm D ở vị trí nào trên cạnh BC để AEDF là hình vuông?

Xem đáp án » 13/07/2024 2,692

Câu 2:

Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA  MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.36).

Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA ⊥ MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.36).   (ảnh 1)

Xem đáp án » 13/07/2024 1,545

Câu 3:

Chứng minh rằng các trung điểm của bốn cạnh trong một hình chữ nhật là các đỉnh của hình thoi.

Xem đáp án » 13/07/2024 1,526

Câu 4:

Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.

Xem đáp án » 13/07/2024 1,192

Câu 5:

Tìm các hình thoi và hình vuông trong Hình 3.32.

Tìm các hình thoi và hình vuông trong Hình 3.32.   (ảnh 1)

Xem đáp án » 13/07/2024 451

Câu 6:

Điền cụm từ thích hợp vào chỗ trống

a) Trong hình thoi ............................ vuông góc với nhau và là ............................................ các góc của hình thoi.

b) Hình bình hành ....................................... bằng nhau là hình thoi.

c) Hình bình hành có ............. đường chéo .............................. với nhau là hình thoi.

d) Tứ giác có ............. cặp cạnh đối ...................................... và có một đường chéo ..................... của một góc là hình thoi.

Xem đáp án » 13/07/2024 294

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store