Câu hỏi:
13/07/2024 719Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông.
Quảng cáo
Trả lời:
(H.3.37). Vì MK = MH, NB = NH ⇒ MN là đường trung bình trong tam giác HKB.
⇒ MN // KB và MN = KB (1)
Chứng minh tương tự, ta có:
PQ // KB và PQ = KB (2)
NP // CH và NP = CH (3)
Từ (1) và (2), ta có MN // PQ và MN = PQ ⇒ MNPQ là hình bình hành (4)
Ta có BK = CH (giả thiết). (5)
Từ (1), (3) và (5), ta có MN = NP ⇒ MNPQ là hình thoi (6)
Vì ∆ABC vuông tại A (giả thiết) ⇒ BK ⊥ CH, mà NP // CH, MN // KB (chứng minh trên).
⇒ MN ⊥ NP (7).
Từ (6) và (7), ta có MNPQ là hình thoi có một góc vuông nên nó là hình chữ nhật.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(H.3.33). a) Tứ giác AEDF có AE // DF, ED // AF nên AEDF là hình bình hành.
b) Để AEDF là hình thoi cần phải có AD là đường phân giác của góc A. Tam giác ABC cân tại A nên có đường phân giác AD cũng là đường trung tuyến, do đó D là trung điểm của BC.
Ngược lại, nếu D là trung điểm của cạnh BC thì AD cũng là đường phân giác của góc A (do tam giác ABC cân tại A). Khi đó hình bình hành AEDF có AD là đường phân giác của góc A nên nó là hình thoi.
c) Nếu tam giác ABC vuông tại A thì hình bình hành AEDF có một góc vuông nên AEDF là hình chữ nhật.
d) Nếu tam giác ABC vuông cân tại A thì AEDF là hình chữ nhật.
Để AEDF là một hình vuông thì nó còn là một hình thoi nên theo câu b, D phải là trung điểm của BC.
Lời giải
Hai tam giác vuông AMB và DMC có AB = DC, BM = MC nên ∆AMB = ∆DMC (c.g.c) ⇒
Do góc
Do đó ∆AMB vuông cân tại B, ∆DMC vuông cân tại C.
Suy ra AB = BM = MC = CD.
Ta có AD = BC = 2AB, suy ra chu vi của ABCD bằng
AB + BC + CD + DA = 36
Do đó AB = CD = 36 : 6 = 6 cm, AD = CB = 12 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận