Giải VTH Toán 8 KNTT Bài 14. Hình thoi và hình vuông đáp án

48 người thi tuần này 4.6 380 lượt thi 8 câu hỏi

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Điền cụm từ thích hợp vào chỗ trống

a) Trong hình thoi ............................ vuông góc với nhau và là ............................................ các góc của hình thoi.

b) Hình bình hành ....................................... bằng nhau là hình thoi.

c) Hình bình hành có ............. đường chéo .............................. với nhau là hình thoi.

d) Tứ giác có ............. cặp cạnh đối ...................................... và có một đường chéo ..................... của một góc là hình thoi.

Lời giải

a) Trong hình thoi hai đường chéo vuông góc với nhau và là các đường phân giác của các góc của hình thoi.

b) Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

c) Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

d) Tứ giác có hai cặp cạnh đối song song và có một đường chéo là đường phân giác của một góc là hình thoi.

Câu 2

Điền cụm từ thích hợp vào chỗ trống

a) Nếu ABCD là một hình vuông thì ta có: AC = ......, AC vuông góc với ......., AC cắt BD tại ............................. mỗi đường, AC là ................................ của góc A, BD là ........................ của góc D.

b) ............................................................. có hai đường chéo vuông góc là hình vuông.

c) Hình chữ nhật có một đường chéo là ....................................................... hình vuông.

d) Hình chữ nhật có ......................................... là hình vuông.

e) Hình thoi ................................ là hình vuông.

f) Hình thoi có ..................................... bằng nhau là hình vuông.

Lời giải

a) Nếu ABCD là một hình vuông thì ta có: AC = BD, AC vuông góc với BD, AC cắt BD tại trung điểm của mỗi đường, AC là tia phân giác của góc A, BD là tia phân giác của góc D.

b) Hình chữ nhật có hai đường chéo vuông góc là hình vuông.

c) Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.

d) Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

e) Hình thoi có một góc vuông là hình vuông.

f) Hình thoi có hai đường chéo bằng nhau là hình vuông.

Câu 3

Tìm các hình thoi và hình vuông trong Hình 3.32.

Tìm các hình thoi và hình vuông trong Hình 3.32.   (ảnh 1)

Lời giải

a) Tứ giác ABCD không là hình thoi hay hình vuông (ABCD là hình bình hành vì hai cặp cạnh đối bằng nhau).

b) Tứ giác EFGH là hình thoi (vì có hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường).

c) Tam giác OMN có OMN^=45°,  MON^=90° nên ∆OMN vuông góc tại O. Tương tự ba tam giác ONP, OPQ, OQR là những tam giác vuông tại O. Do đó tứ giác MNPQ có 4 góc vuông nên là hình chữ nhật. Hình chữ nhật MNPQ có hai đường chéo vuông góc nên là hình vuông.

d) Tứ giác RSUT không là hình thoi hay hình vuông.

Câu 4

Cho tam giác ABC, D là một điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB, AC, chúng cắt các cạnh AC, AB lần lượt tại E, F.

a) Tứ giác AEDF là hình gì? Vì sao?

b) Nếu tam giác ABC cân tại A thì điểm D ở vị trí nào trên cạnh BC để tứ giác AEDF là hình thoi?

c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì?

d) Nếu tam giác ABC vuông cân tại A thì điểm D ở vị trí nào trên cạnh BC để AEDF là hình vuông?

Lời giải

Cho tam giác ABC, D là một điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB, AC, chúng cắt các cạnh AC, AB lần lượt tại E, F. a) Tứ giác AEDF là hình gì? Vì sao? b) Nếu tam giác ABC cân tại A thì điểm D ở vị trí nào trên cạnh BC để tứ giác AEDF là hình thoi? c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì? d) Nếu tam giác ABC vuông cân tại A thì điểm D ở vị trí nào trên cạnh BC để AEDF là hình vuông? (ảnh 1)

(H.3.33). a) Tứ giác AEDF có AE // DF, ED // AF nên AEDF là hình bình hành.

b) Để AEDF là hình thoi cần phải có AD là đường phân giác của góc A. Tam giác ABC cân tại A nên có đường phân giác AD cũng là đường trung tuyến, do đó D là trung điểm của BC.

Ngược lại, nếu D là trung điểm của cạnh BC thì AD cũng là đường phân giác của góc A (do tam giác ABC cân tại A). Khi đó hình bình hành AEDF có AD là đường phân giác của góc A nên nó là hình thoi.

c) Nếu tam giác ABC vuông tại A thì hình bình hành AEDF có một góc vuông nên AEDF là hình chữ nhật.

d) Nếu tam giác ABC vuông cân tại A thì AEDF là hình chữ nhật.

Để AEDF là một hình vuông thì nó còn là một hình thoi nên theo câu b, D phải là trung điểm của BC.

Câu 5

Chứng minh rằng các trung điểm của bốn cạnh trong một hình chữ nhật là các đỉnh của hình thoi.

Lời giải

Chứng minh rằng các trung điểm của bốn cạnh trong một hình chữ nhật là các đỉnh của hình thoi. (ảnh 1)

(H.3.34). Ta có AE = EB, AH = HD ⇒ HE // BD, HE = 12BD.

Tương tự GF // BD, GF = 12BD, EF // AC, EF = 12AC.

Suy ra HE // GF, HE = GF, do đó HEFG là hình bình hành.

Tứ giác ABCD là hình chữ nhật nên AC = BD ⇒ HE = GF = EF = HG ⇒ HEFG là hình thoi.

Câu 6

Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.

Lời giải

Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật. (ảnh 1)

(H.3.35). Trung điểm các cạnh AB, BC, CD, DA của hình thoi ABCD lần lượt là M, N, P, Q. Tương tự bài 3, ta chứng minh được MNPQ là hình bình hành.

Tứ giác ABCD là hình thoi nên AC BD. (1)

Ta có MN // AC, MQ // BD. (2)

Từ (1) và (2) suy ra MN MQ MNPQ là hình bình hành có một góc vuông nên là hình chữ nhật.

Câu 7

Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA  MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.36).

Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA ⊥ MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.36).   (ảnh 1)

Lời giải

Hai tam giác vuông AMB và DMC có AB = DC, BM = MC nên ∆AMB = ∆DMC (c.g.c) ⇒ AMB^=DMC^.

Do góc AMD^=90°AMB^=DMC^=180°90°:2=45°.

Do đó ∆AMB vuông cân tại B, ∆DMC vuông cân tại C.

Suy ra AB = BM = MC = CD.

Ta có AD = BC = 2AB, suy ra chu vi của ABCD bằng

AB + BC + CD + DA = 36

Do đó AB = CD = 36 : 6 = 6 cm, AD = CB = 12 cm.

Câu 8

Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông.

Lời giải

Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông. (ảnh 1)

(H.3.37). Vì MK = MH, NB = NH ⇒ MN là đường trung bình trong tam giác HKB.

⇒ MN // KB và MN = 12KB (1)

Chứng minh tương tự, ta có:

PQ // KB và PQ = 12KB (2)

NP // CH và NP = 12CH (3)

Từ (1) và (2), ta có MN // PQ và MN = PQ ⇒ MNPQ là hình bình hành (4)

Ta có BK = CH (giả thiết). (5)

Từ (1), (3) và (5), ta có MN = NP ⇒ MNPQ là hình thoi (6)

Vì ∆ABC vuông tại A (giả thiết) ⇒ BK ⊥ CH, mà NP // CH, MN // KB (chứng minh trên).

⇒ MN ⊥ NP (7).

Từ (6) và (7), ta có MNPQ là hình thoi có một góc vuông nên nó là hình chữ nhật.

4.6

76 Đánh giá

50%

40%

0%

0%

0%