Câu hỏi:
13/07/2024 1,262
Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).
Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.
Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).

Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình bình hành có đáp án !!
Quảng cáo
Trả lời:
Do H là trung điểm của AM nên \(HM = \frac{1}{2}AM\).
Ta có diện tích tam giác ABC bằng: \(\frac{1}{2}.AM.BC = HM.BC\).
Xét ∆BCH và ∆CBD có:
BH = CD, BD = HC (do BDCH là hình bình hành), cạnh BC chung
Do đó ∆BCH = ∆CBD (c.c.c)
Suy ra S∆BCH = S∆CBD
Nên diện tích tứ giác BHCD bằng 2 lần diện tích tam giác BCH.
Khi đó, diện tích tứ giác BHCD bằng: \(2\left( {\frac{1}{2}.HM.BC} \right) = HM.BC\).
Vậy diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do AM, BN, CP là đường cao của ∆ABC nên AM ⊥ BC, BN ⊥ AC, CP ⊥ AB
Do CP ⊥ AB, BD ⊥ AB nên CP // BD.
Do BN ⊥ AC, CD ⊥ AC nên BN // CD
Tứ giác BDCH có BD // CH, BH // CD nên BDCH là hình bình hành.
Lời giải

Do AHBC là hình bình hành nên AH // BC, AH = BC.
Tương tự, AKCB là hình bình hành nên AK // BC, AK = BC.
Suy ra ba điểm H, A, K thẳng hàng và AH = AK.
Vậy A là trung điểm của HK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.