Câu hỏi:

13/07/2024 945

Cho hình bình hành ABCD có \(\widehat A > 90^\circ \), AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:

AC EP.

Cho hình bình hành ABCD có góc A > 90 độ, AB > BC Chứng minh AC vuông góc với EP (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi H là giao điểm của AC và EP, K là giao điểm của AB và PQ.

Cho hình bình hành ABCD có góc A > 90 độ, AB > BC Chứng minh AC vuông góc với EP (ảnh 2)

Do ABCD là hình bình hành nên AB // CD, AD = BC, \(\widehat B = \widehat D\).

Vì AB // CD nên \(\widehat {BKC} = \widehat {DCK} = 90^\circ \) (hai góc so le trong).

Suy ra tam giác BCK vuông tại K. Do đó \(\widehat B + \widehat {BCK} = 90^\circ \)

\(\widehat B = \widehat D\), suy ra \(\widehat D + \widehat {BCK} = 90^\circ \).

Mặt khác, ta có \(\widehat {ECP} + \widehat {BCK} = \widehat {BCE} = 90^\circ \) nên \(\widehat D = \widehat {ECP}\).

Xét ∆ACD và ∆EPC có:

AD = EC (vì cùng bằng BC); \(\widehat D = \widehat {ECP}\); CD = PC.

Do đó ∆ACD = ∆EPC (c.g.c).

Suy ra \(\widehat {ACD} = \widehat {EPC}\) (hai góc tương ứng).

\(\widehat {ACD} + \widehat {PCH} = \widehat {DCP} = 90^\circ \), suy ra \(\widehat {HPC} + \widehat {PCH} = 90^\circ \).

Xét tam giác CPH, ta có: \(\widehat {CHP} + \widehat {HPC} + \widehat {PCH} = 180^\circ \).

Suy ra \(\widehat {CHP} + 90^\circ = 180^\circ \) hay \(\widehat {CHP} = 90^\circ \).

Vậy \(AC \bot EP\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do AM, BN, CP là đường cao của ∆ABC nên AM BC, BN AC, CP AB

Do CP AB, BD AB nên CP // BD.

Do BN AC, CD AC nên BN // CD

Tứ giác BDCH có BD // CH, BH // CD nên BDCH là hình bình hành.

Lời giải

Cho tam giác ABC có các đường trung tuyến BD và CE A là trung điểm của HK (ảnh 1)

Do AHBC là hình bình hành nên AH // BC, AH = BC.

Tương tự, AKCB là hình bình hành nên AK // BC, AK = BC.

Suy ra ba điểm H, A, K thẳng hàng và AH = AK.

Vậy A là trung điểm của HK.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay