Câu hỏi:
13/07/2024 961
Cho hình bình hành ABCD có \(\widehat A > 90^\circ \), AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:
AC ⊥ EP.
Cho hình bình hành ABCD có \(\widehat A > 90^\circ \), AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:
AC ⊥ EP.

Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình bình hành có đáp án !!
Quảng cáo
Trả lời:
Gọi H là giao điểm của AC và EP, K là giao điểm của AB và PQ.

Do ABCD là hình bình hành nên AB // CD, AD = BC, \(\widehat B = \widehat D\).
Vì AB // CD nên \(\widehat {BKC} = \widehat {DCK} = 90^\circ \) (hai góc so le trong).
Suy ra tam giác BCK vuông tại K. Do đó \(\widehat B + \widehat {BCK} = 90^\circ \)
Mà \(\widehat B = \widehat D\), suy ra \(\widehat D + \widehat {BCK} = 90^\circ \).
Mặt khác, ta có \(\widehat {ECP} + \widehat {BCK} = \widehat {BCE} = 90^\circ \) nên \(\widehat D = \widehat {ECP}\).
Xét ∆ACD và ∆EPC có:
AD = EC (vì cùng bằng BC); \(\widehat D = \widehat {ECP}\); CD = PC.
Do đó ∆ACD = ∆EPC (c.g.c).
Suy ra \(\widehat {ACD} = \widehat {EPC}\) (hai góc tương ứng).
Mà \(\widehat {ACD} + \widehat {PCH} = \widehat {DCP} = 90^\circ \), suy ra \(\widehat {HPC} + \widehat {PCH} = 90^\circ \).
Xét tam giác CPH, ta có: \(\widehat {CHP} + \widehat {HPC} + \widehat {PCH} = 180^\circ \).
Suy ra \(\widehat {CHP} + 90^\circ = 180^\circ \) hay \(\widehat {CHP} = 90^\circ \).
Vậy \(AC \bot EP\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do AM, BN, CP là đường cao của ∆ABC nên AM ⊥ BC, BN ⊥ AC, CP ⊥ AB
Do CP ⊥ AB, BD ⊥ AB nên CP // BD.
Do BN ⊥ AC, CD ⊥ AC nên BN // CD
Tứ giác BDCH có BD // CH, BH // CD nên BDCH là hình bình hành.
Lời giải

Do AHBC là hình bình hành nên AH // BC, AH = BC.
Tương tự, AKCB là hình bình hành nên AK // BC, AK = BC.
Suy ra ba điểm H, A, K thẳng hàng và AH = AK.
Vậy A là trung điểm của HK.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.